M=\(\dfrac{X+2}{3}\) \(\in Z\)
Bài 4:
Cho biểu thức: \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) Tìm đkxđ của M và rút gọn
b) Tìm x \(\in Z\) để M \(\in Z\)
\(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\left(\text{đ}k\text{x}\text{đ}:x\ge3\right)\\ =\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\\ =\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{2\sqrt{x}-9-\left(x-9\right)-\left(2x-4\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9-2x+4\sqrt{x}-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ =\dfrac{5\sqrt{x}-3x+2}{x-5\sqrt{x}+6}\)
__
Để \(M\in Z\) thì \(x-5\sqrt{x}+6\) thuộc ước của \(5\sqrt{x}-3x+2\)
\(\Rightarrow x-5\sqrt{x}+6=-5\sqrt{x}-3x+2\\ \Leftrightarrow x-5\sqrt{x}+6+5\sqrt{x}+3x-2=0\\ \Leftrightarrow4x-4=0\\ \Leftrightarrow4x=4\\ \Leftrightarrow x=1\)
tìm x \(\in Z\)
a) \(\dfrac{x-3}{2x+1}\in Z\)
b) \(\dfrac{5x-4}{2x+1}\in Z\)
c) \(\dfrac{x^2-3x-1}{x+2}\in Z\)
Cho \(x;y;z\in Z^+.\)C/m: \(\sqrt{\dfrac{x}{y+z+2x}}+\sqrt{\dfrac{y}{z+x+2y}}+\sqrt{\dfrac{z}{x+y+2z}}\le\dfrac{3}{2}\)
Câu hỏi của Thư Nguyễn Nguyễn - Toán lớp 7 | Học trực tuyến
Cho đa thức M(x)=\(x^2-2;N\left(x\right)=-x^3-x\)
Tìm \(x\in Z\) để \(\dfrac{N\left(x\right)}{M\left(x\right)}\in Z\)
\(\Leftrightarrow-x^3-x⋮x^2-2\)
\(\Leftrightarrow-x^3+2x-3x⋮x^2-2\)
\(\Leftrightarrow-3x^2⋮x^2-2\)
\(\Leftrightarrow x^2-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{1;-1;2;-2\right\}\)
Cho A = (\(\dfrac{x+2}{32}+\dfrac{2}{x+1}-3\)) . \(\dfrac{x+1}{2-4x}-\dfrac{3x-x^2+1}{3x}\)
a. Tìm x : A=670
b. Tìm x \(\in\) Z để \(\dfrac{2}{A}\in\) Z
1) biết các nghiệm của phương trình \(cos2x=-\dfrac{1}{2}\) có dạng \(x=\dfrac{\pi}{m}+k\pi,k\in Z\) với m,n là các số nguyên dương. Khi đó m+n bằng
2) cho \(x=\dfrac{\pi}{3}+k2\pi\left(k\in Z\right)\) là nghiệm của phương trình
3) cho \(x=\dfrac{\pi}{2}+k\pi\left(k\in Z\right)\) là nghiệm của phương trình
Cho M =\(\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\) (x \(\ne\)\(\pm\)1)
a) Rút gọn M
b)Tìm x để M =\(\dfrac{-2}{3}\)
c)Tìm x\(\in\)Z để M\(\in\)Z.
a) \(M=\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\left(\dfrac{-1}{x-1}+\dfrac{2}{x+1}+\dfrac{5-x}{x^2-1}\right):\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\left(\dfrac{-1}{x-1}+\dfrac{2}{x+1}+\dfrac{5-x}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\left(\dfrac{-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{5-x}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\dfrac{-\left(x+1\right)+2\left(x-1\right)+\left(5-x\right)}{\left(x-1\right)\left(x+1\right)}:\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\dfrac{-x-1+2x-2+5-x}{\left(x-1\right)\left(x+1\right)}:\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\dfrac{2}{\left(x-1\right)\left(x+1\right)}:\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\dfrac{2}{\left(x-1\right)\left(x+1\right)}.\dfrac{x^2-1}{1-2x}\)
\(\Leftrightarrow M=\dfrac{2\left(x^2-1\right)}{\left(x-1\right)\left(x+1\right)\left(1-2x\right)}\)
\(\Leftrightarrow M=\dfrac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(1-2x\right)}\)
\(\Leftrightarrow M=\dfrac{2}{1-2x}\)
b) \(M=\dfrac{2}{1-2x}=\dfrac{-2}{3}\)
\(\Rightarrow2.3=\left(1-2x\right).\left(-2\right)\)
\(\Rightarrow6=-2+4x\)
\(\Rightarrow4x=6-\left(-2\right)\)
\(\Rightarrow4x=6+2\)
\(\Rightarrow4x=8\)
\(\Rightarrow x=8:4\)
\(\Rightarrow x=2\)
Vậy \(M=\dfrac{-2}{3}\) thì \(x=2\)
c) Để \(M=\dfrac{2}{1-2x}\in Z\) \(\Leftrightarrow2⋮1-2x\)
\(\Rightarrow1-2x\in U\left(2\right)=\left\{-1;1;-2;2\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}1-2x=-1\Rightarrow x=1\\1-2x=1\Rightarrow x=0\\1-2x=-2\Rightarrow x=1,5\\1-2x=2\Rightarrow x=-0,5\end{matrix}\right.\)
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{1;0\right\}\)
Vậy \(x=1\) hoặc \(x=0\) thì \(M\in Z\)
a) M = \(\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)
= \(\left(\dfrac{1}{1-x}+\dfrac{2}{1+x}-\dfrac{5-x}{\left(1-x\right)\left(1+x\right)}\right).\dfrac{x^2-1}{1-2x}\)
= \(\left(\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2\left(1-x\right)}{\left(1-x\right)\left(1+x\right)}-\dfrac{5-x}{\left(1-x\right)\left(1+x\right)}\right).\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
= \(\dfrac{1+x+2-2x-5+x}{\left(1-x\right)\left(1+x\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)\(=\dfrac{-2}{\left(1-x\right)\left(1+x\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
= \(\dfrac{2}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
=\(\dfrac{2}{1-2x}\)
b) M = \(\dfrac{-2}{3}\Leftrightarrow\dfrac{2}{1-2x}=\dfrac{-2}{3}\)
=> 2 . 3 = -2 (1 - 2x) (tích chéo)
=> 6 = -2 + 4x
=> 6 + 2 - 4x = 0
=> 8 - 4x = 0
=> 4x = 8
=> x = 2 (thỏa mãn đkxđ)
Vậy để M = \(\dfrac{-2}{3}\) thì x = 2
\(choP=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)....a,tìm.x\in Z.để.P\in Z...b,tìm.x\in z.để.P\in z...c,tìm.x.để.\left|P\right|=P...d,tìm.x.để.\sqrt{P}>P\)
\(M=\left(\dfrac{1}{x+2}+\dfrac{2}{2-x}+\dfrac{x}{x^2-4}\right):\left(\dfrac{10-x^2}{x+2}+x-2\right)\)
a) Tìm ĐKXĐ và Rút gọn M
b) Tìm \(x\in Z\) để \(M\in Z\)
TXĐ : \(x\ne\pm2\)
\(M=\left[\dfrac{1}{x+2}-\dfrac{2}{x-2}+\dfrac{x}{\left(x-2\right)\left(x+2\right)}\right]:\dfrac{10-x^2+\left(x-2\right)\left(x+2\right)}{x+2}\)
\(=\dfrac{x-2-2\left(x+2\right)+x}{\left(x-2\right)\left(x+2\right)}.\dfrac{x+2}{10-x^2+x^2-1}\)
\(=\dfrac{x-2-2x-4+x}{x-2}.\dfrac{1}{6}\)
\(=\dfrac{-6}{x-2}.\dfrac{1}{6}=\dfrac{1}{2-x}\)
BT1: Tìm x, biết:
5) \(\dfrac{1}{2}+\dfrac{1}{3}< x\le1\dfrac{1}{2}+\dfrac{1}{5}\left(x\in Z\right)\)
1/2+1/3<x<=1+1/2+1/5
=>5/6<x<=1+7/10
=>5/6<x<17/10
mà x là số nguyên
nên x=1