Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
HP
Xem chi tiết
DQ
2 tháng 10 2020 lúc 5:27

\(pt=\left(x^3-4x^2+4x\right)+\left(y^3-4y^2+4y\right)+\left(8x^2+8y^2-16xy\right)=0\)

\(\Leftrightarrow x\left(x-2\right)^2+y\left(y-2\right)^2+8\left(x-y\right)^2=0\left(1\right)\)

Do \(x\left(x-2\right)^2\ge0,y\left(y-2\right)^2\ge0,8\left(x-y\right)^2\ge0\left(2\right)\)

Từ (1) và (2) =>x=y=2

Bình luận (0)
 Khách vãng lai đã xóa
VT
Xem chi tiết
NL
18 tháng 3 2021 lúc 22:56

\(\dfrac{x^3}{4\left(y+2\right)}+\dfrac{x\left(y+2\right)}{16}\ge\dfrac{x^2}{4}\) ; \(\dfrac{y^3}{4\left(x+2\right)}+\dfrac{y\left(x+2\right)}{16}\ge\dfrac{y^2}{4}\)

\(\Rightarrow Q+\dfrac{2xy+2x+2y}{16}\ge\dfrac{x^2+y^2}{4}\ge\dfrac{\left(x+y\right)^2}{8}\)

\(\Rightarrow Q\ge\dfrac{\left(x+y\right)^2-\left(x+y\right)}{8}-\dfrac{1}{2}=\dfrac{\left(x+y-4\right)^2+7\left(x+y\right)-16}{8}-\dfrac{1}{2}\)

\(\Rightarrow Q\ge\dfrac{7\left(x+y\right)-16}{8}-\dfrac{1}{2}\ge\dfrac{14\sqrt{xy}-16}{8}-\dfrac{1}{2}=1\)

\(Q_{min}=1\) khi \(x=y=2\)

Bình luận (0)
AN
Xem chi tiết
NL
1 tháng 8 2021 lúc 18:13

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)

Bình luận (0)
AL
Xem chi tiết
NH
Xem chi tiết
QN
13 tháng 3 2021 lúc 19:16

Bạn tham khảo cách giải:

Bình luận (0)
QN
13 tháng 3 2021 lúc 19:17

Bạn tham khảo cách giải: 

Bình luận (0)
QN
13 tháng 3 2021 lúc 19:18

Bạn tham khảo cách giải: undefined

Bình luận (0)
TT
Xem chi tiết
TN
14 tháng 5 2019 lúc 21:02

Ta có \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

\(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a+b\right)^2\ge4ab\)

( dấu '=' xảy ra khi a=b)

Áp dụng các bđt trên ta có

\(x^3+y^3+4\left(x^2+y^2\right)+4\left(x+y\right)=x^3+y^3+4x^2+4y^2+4x+4y=x^3+4x^2+4x+y^3+4y^2+4y=x\left(x^2+4x+4\right)+y\left(y^2+4y+4\right)=x\left(x+2\right)^2+y\left(y+2\right)^2\ge x.8x+y.8y=8\left(x^2+y^2\right)\ge8.2xy=16xy\Leftrightarrow x^3+y^3+4\left(x^2+y^2\right)+4\left(x+y\right)\ge16\)

Dấu '=' xảy ra khi x=y=2

Vậy (x;y)=(2;2)

Bình luận (1)
H24
Xem chi tiết
NM
31 tháng 12 2021 lúc 21:16

\(c,P=\dfrac{x^2-x^2+8xy-16y^2}{x^2+4y^2}=\dfrac{8\left(\dfrac{x}{y}\right)-16}{\left(\dfrac{x}{y}\right)^2+4}\)

Đặt \(\dfrac{x}{y}=t\)

\(\Leftrightarrow P=\dfrac{8t-16}{t^2+4}\Leftrightarrow Pt^2+4P=8t-16\\ \Leftrightarrow Pt^2-8t+4P+16=0\)

Với \(P=0\Leftrightarrow t=2\)

Với \(P\ne0\Leftrightarrow\Delta'=16-P\left(4P+16\right)\ge0\)

\(\Leftrightarrow-P^2-4P+4\ge0\Leftrightarrow-2-2\sqrt{2}\le P\le-2+2\sqrt{2}\)

Vậy \(P_{max}=-2+2\sqrt{2}\Leftrightarrow t=\dfrac{4}{P}=\dfrac{4}{-2+2\sqrt{2}}=2+\sqrt{2}\)

\(\Leftrightarrow\dfrac{x}{y}=2+2\sqrt{2}\)

Bình luận (2)
TC
31 tháng 12 2021 lúc 21:20

Bài a hình như sai đề rồi bạn.

undefined

Bình luận (2)
NM
31 tháng 12 2021 lúc 21:59

\(a,\text{Đặt }\left\{{}\begin{matrix}S=y+z\\P=yz\end{matrix}\right.\\ HPT\Leftrightarrow\left\{{}\begin{matrix}\left(y+z\right)^2-2yz+x^2=8\\x\left(y+z\right)+yz=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S^2-2P+x^2=8\\Sx+P=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}S^2-2\left(4-Sx\right)+x^2=8\\P=4-Sx\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}S^2+2Sx+x^2-16=0\left(1\right)\\P=4-Sx\end{matrix}\right.\\ \left(1\right)\Leftrightarrow\left(S+x-4\right)\left(S+x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}S=-x+4\Rightarrow P=\left(x-2\right)^2\\S=-x-4\Rightarrow P=\left(x+2\right)^2\end{matrix}\right.\)

Mà y,z là nghiệm của hệ nên \(S^2-4P\ge0\Leftrightarrow\left[{}\begin{matrix}\left(4-x\right)^2\ge4\left(x-2\right)^2\\\left(-4-x\right)^2\ge4\left(x+2\right)^2\end{matrix}\right.\Leftrightarrow-\dfrac{8}{3}\le x\le\dfrac{8}{3}\)

Bình luận (0)
TD
Xem chi tiết
TB
6 tháng 11 2017 lúc 22:05

a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3

MInA=3<=>x=y=z=1

Bình luận (0)
TM
6 tháng 11 2017 lúc 21:39

b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)

Bình luận (0)
LC
Xem chi tiết