Chương I - Căn bậc hai. Căn bậc ba

VT

Cho x,y>0 và xy=4.Tìm GTNN của \(Q=\dfrac{x^3}{4\left(y+2\right)}+\dfrac{y^3}{4\left(x+2\right)}\)

NL
18 tháng 3 2021 lúc 22:56

\(\dfrac{x^3}{4\left(y+2\right)}+\dfrac{x\left(y+2\right)}{16}\ge\dfrac{x^2}{4}\) ; \(\dfrac{y^3}{4\left(x+2\right)}+\dfrac{y\left(x+2\right)}{16}\ge\dfrac{y^2}{4}\)

\(\Rightarrow Q+\dfrac{2xy+2x+2y}{16}\ge\dfrac{x^2+y^2}{4}\ge\dfrac{\left(x+y\right)^2}{8}\)

\(\Rightarrow Q\ge\dfrac{\left(x+y\right)^2-\left(x+y\right)}{8}-\dfrac{1}{2}=\dfrac{\left(x+y-4\right)^2+7\left(x+y\right)-16}{8}-\dfrac{1}{2}\)

\(\Rightarrow Q\ge\dfrac{7\left(x+y\right)-16}{8}-\dfrac{1}{2}\ge\dfrac{14\sqrt{xy}-16}{8}-\dfrac{1}{2}=1\)

\(Q_{min}=1\) khi \(x=y=2\)

Bình luận (0)

Các câu hỏi tương tự
CW
Xem chi tiết
VQ
Xem chi tiết
DA
Xem chi tiết
TN
Xem chi tiết
TT
Xem chi tiết
HA
Xem chi tiết
NQ
Xem chi tiết
AA
Xem chi tiết
PK
Xem chi tiết