Những câu hỏi liên quan
ND
Xem chi tiết
VT
Xem chi tiết
SC
Xem chi tiết
NT
13 tháng 6 2023 lúc 8:43

2:

a: =>a^2+2ab+b^2-2a^2-2b^2<=0

=>-(a^2-2ab+b^2)<=0

=>(a-b)^2>=0(luôn đúng)

b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0

=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

Bình luận (0)
TU
Xem chi tiết
NL
21 tháng 8 2021 lúc 12:56

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow ab+bc+ca\le1\)

\(\Rightarrow P_{max}=1\) khi \(a=b=c\)

Lại có:

\(\left(a+b+c\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow ab+bc+ca\ge-\dfrac{a^2+b^2+c^2}{2}=-\dfrac{1}{2}\)

\(P_{min}=-\dfrac{1}{2}\) khi \(a+b+c=0\)

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 9 2019 lúc 16:38

Áp dụng bất đẳng thức Cauchy cho 2 số dương ta có:

a 2 + b 2 ≥ 2 a b ,   b 2 + c 2 ≥ 2 b c ,   c 2 + a 2 ≥ 2 c a  

Do đó:  2 a 2 + b 2 + c 2 ≥ 2 ( a b + b c + c a ) = 2.9 = 18 ⇒ 2 P ≥ 18 ⇒ P ≥ 9

Dấu bằng xảy ra khi  a = b = c = 3 . Vậy MinP= 9 khi  a = b = c = 3

Vì  a ,   b ,   c   ≥ 1 , nên  ( a − 1 ) ( b − 1 ) ≥ 0 ⇔ a b − a − b + 1 ≥ 0 ⇔ a b + 1 ≥ a + b

Tương tự ta có  b c + 1 ≥ b + c ,   c a + 1 ≥ c + a  

Do đó  a b + b c + c a + 3 ≥ 2 ( a + b + c ) ⇔ a + b + c ≤ 9 + 3 2 = 6

Mà   P = a 2 + b 2 + c 2 = a + b + c 2 − 2 a b + b c + c a = a + b + c 2 – 18

⇒ P ≤ 36 − 18 = 18 . Dấu bằng xảy ra khi :  a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1

Vậy maxP= 18 khi :  a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1

Bình luận (0)
KH
Xem chi tiết
NL
31 tháng 1 2021 lúc 15:32

\(P\le a^2+b^2+c^2+3\sqrt{3\left(a^2+b^2+c^2\right)}=12\)

\(P_{max}=12\) khi \(a=b=c=1\)

Lại có: \(\left(a+b+c\right)^2=3+2\left(ab+bc+ca\right)\ge3\Rightarrow a+b+c\ge\sqrt{3}\)

\(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)

\(\Rightarrow\sqrt{3}\le a+b+c\le3\)

\(P=\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}+3\left(a+b+c\right)\)

\(P=\dfrac{1}{2}\left(a+b+c\right)^2+3\left(a+b+c\right)-\dfrac{3}{2}\)

Đặt \(a+b+c=x\Rightarrow\sqrt{3}\le x\le3\)

\(P=\dfrac{1}{2}x^2+3x-\dfrac{3}{2}=\dfrac{1}{2}\left(x-\sqrt{3}\right)\left(x+6+\sqrt{3}\right)+3\sqrt{3}\ge3\sqrt{3}\)

\(P_{min}=3\sqrt{3}\) khi \(x=\sqrt{3}\) hay \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và hoán vị

Bình luận (0)
VN
22 tháng 6 2021 lúc 9:45

thế bạn bt hok

Bình luận (0)
 Khách vãng lai đã xóa
TU
Xem chi tiết
NL
8 tháng 12 2021 lúc 19:49

Do \(a^2+b^2+c^2=1\Rightarrow0\le a;b;c\le1\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\\b^{2011}\le b\\c^{2011}\le c\end{matrix}\right.\)

\(\Rightarrow T\le a+b+c-ab-bc-ca=\left(a-1\right)\left(b-1\right)\left(c-1\right)+1-abc\le1-abc\le1\)

\(T_{max}=1\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị

Bình luận (0)
TH
Xem chi tiết
NT
23 tháng 10 2016 lúc 21:38

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

Bình luận (0)
TN
23 tháng 10 2016 lúc 14:42

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

Bình luận (0)
NB
7 tháng 12 2020 lúc 19:20

bạn hỏi từ từ thôi

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
PB
Xem chi tiết
CT
28 tháng 12 2019 lúc 3:20

a) x2 + 1 ≤ (x - 2)2 ⇔ x2 + 1 ≤ x2 - 4x + 4 ⇔ 4x ≤ 3

⇔ x ≤ 3/4

Vậy: x ≤ 3/4

b) a, b > 0

Ta có: a + b = 1 suy ra: (a + b)2 = 1 ⇒ a2 + 2ab + b2 = 1 (1)

Mặt khác (a - b)2 ≥ 0 với mọi a, b ⇒ a2 - 2ab + b2 ≥ 0 (2)

Cộng (1) và (2) vế theo vế, ta được:

2a2 + 2b2 ≥ 1 ⇒ 2(a2 + b2) ≥ 1 ⇒ a2 + b2 ≥ 1/2

Bình luận (0)