\(S=ab+2\left(a+b\right)\le\frac{a^2+b^2}{2}+2\sqrt{2\left(a^2+b^2\right)}=\frac{1}{2}+2\sqrt{2.1}=\frac{1}{2}+2\sqrt{2}=\sqrt{8}+\frac{1}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=\frac{1}{\sqrt{2}}\)
\(S=ab+2\left(a+b\right)\le\frac{a^2+b^2}{2}+2\sqrt{2\left(a^2+b^2\right)}=\frac{1}{2}+2\sqrt{2.1}=\frac{1}{2}+2\sqrt{2}=\sqrt{8}+\frac{1}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=\frac{1}{\sqrt{2}}\)
cho a, b>0 và a²+b²=1. tìm giá trị lớn nhất của biểu thức s= ab+2(a+b)
cho a>0,b>0 và a2 +b2 =1.Tìm giá trị lớn nhất của biểu thức : S =ab+2(a+b)
Cho hai biểu thức A = xx -2 - x +1x + 2 + 4x-4 và B = , với , x≠4 1) Tính giá trị của biểu thức B khi x = . 2) Rút gọn biểu thức M = A : (B + 1) 3) Tìm giá trị nhỏ nhất của biểu thức M.
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
Cho hai số thực a, b không âm thỏa mãn a 2 + b 2 = 9. Tìm giá trị lớn nhất của biểu thức
P = ab/ a + b + 3 .
Cho biểu thức: . Tìm giá trị của x để A đạt giá trị lớn nhất.
Cho a≥1; b≥9; c≥16 thỏa mãn a.b.c = 1152
Tìm giá trị lớn nhất của biểu thức :
P = bc\(\sqrt{a-1}+ca\sqrt{b-9}+ab\sqrt{c-16}\)
2) Cho a >= 0 b > 0 và a ^ 2 + b ^ 2 = 8 Tìm giá trị lớn nhất của biểu thức M = sqrt(3) * (sqrt(a(a + 2b)) + sqrt(b(b + 2a)))
Bài 3. Cho biểu thức : B = 1/(2sqrt(x) - 2) - 1/(2sqrt(x) + 2) + (sqrt(x))/(1 - x) A = (1 - (5 + sqrt(5))/(1 + sqrt(5)))((5 - sqrt(5))/(1 - sqrt(5)) - 1)
a) Tính A
b) Tìm ĐKXĐ rồi rút gọn biểu thức B;
c) Tính giá trị của B với x = 9
d) Tìm giá trị của x để |B| = A