cho x2 +y2 =1 tìm min, mã S=(2-x)(2-y)
cho x2+y2+z2=3,x,y,z>0 tìm min A=\(\dfrac{1}{x+2}\)+\(\dfrac{1}{y+2}\)+\(\dfrac{1}{z+2}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
$A\geq \frac{9}{x+2+y+2+z+2}=\frac{9}{x+y+z+6}$
Áp dụng BĐT Bunhiacopxky:
$(x^2+y^2+z^2)(1+1+1)\geq (x+y+z)^2$
$\Rightarrow 9\geq (x+y+z)^2\Rightarrow x+y+z\leq 3$
$\Rightarrow A\geq \frac{9}{x+y+z+6}\geq \frac{9}{3+6}=1$
Vậy $A_{\min}=1$. Dấu "=" xảy ra khi $x=y=z=1$
Tìm min f(x,y) = x+y với điều kiện (x-1)2 + y2 <=1 và x2 + y2 <=2
Các bạn giúp dùm mình với....
Cho x , y thuộc R
Tìm Min A =
x2+y2+2/(x)+3/(x+y)
1. Tìm min của biểu thức A = 4x4 + 4x2y2 + y2 +2
2. Tìm min của biểu thức B = x2 + 2xy +y2 + (y+1)2 + 12
\(1,Sửa:A=4x^4+4x^2y+y^2+2=\left(2x^2+y\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow2x^2+y=0\Leftrightarrow x^2=-\dfrac{y}{2}\\ 2,B=\left(x+y\right)^2+\left(y+1\right)^2+12\ge12\\ B_{min}=12\Leftrightarrow\left\{{}\begin{matrix}x=-y=1\\y=-1\end{matrix}\right.\)
cho x,y∈ R ; x≠y
tìm min P=x2-6xy+6y2/x2-2xy+y2
\(P=\dfrac{x^2-6xy+6y^2}{x^2-2xy+y^2}=\dfrac{-3\left(x^2-2xy+y^2\right)+4x^2-12xy+9y^2}{x^2-2xy+y^2}\)
\(=-3+\left(\dfrac{2x-3y}{x-y}\right)^2\ge-3\)
\(P_{min}=-3\) khi \(2x=3y\)
cho x;y thỏa mãn x2+8/x2+y2/8=8 tìm max và min củaB=xy+2024
đúng thì like giúp mik nha bạn. Thx bạn
cho x2+2y2+2xy-10x-12y+22=0
tìm Mã Min của P=x+y+1
Đúng thù thì ❤️ giúp mik nha bạn. Thx bạn
rút gọn P=2/x-(x2/(x2-xy)+(x2-y2)/xy-y2/(y2-xy)):(x2-xy+y2)/(x-y)
r tìm gt P với |2x-1|=1 ; |y+1|=1/2
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.
Cho biết y tỉ lệ thuận với x1 ; x2 là các giá trị của x . Y1;y2 là các giá trị tương ướng của y
a) Biết x;y Tỉ lệ thuận và x1 = 2 ; x2 = 3 ; y1 = 1/2 . Tìm y2 ?
b) Biết x;y Tỉ lệ nghịch và x1 = 1/2 ; y1 = 4 ; y2 = -4 . Tìm x2
Giúp mk đi ai đúng mk tích cho
Lời giải:
a. Vì $x,y$ tỉ lệ thuận nên đặt $y=kx$. Ta có:
$y_1=kx_1$ hay $\frac{1}{2}=k.2\Rightarrow k=\frac{1}{4}$. Vậy $y=\frac{1}{4}x$
$y_2=kx_2=\frac{1}{4}x_2=\frac{1}{4}.3=\frac{3}{4}$
b.
Vì $x,y$ tỉ lệ nghịch nên đặt $xy=k$.
$x_1y_1=k=x_2y_2$
$\Leftrightarrow \frac{1}{2}.4=x_2.(-4)$
$\Leftrightarrow x_2=\frac{-1}{2}$
cho (P) y=x^2 , (d) y=k(x - 1) +2 cho 2 điểm phân biệt A(x1,y1) , B(x2,y2) tìm k thỏa mãn (x1^2 + y1) + (x2^2 + y2) = 14
A, B thuộc (P), (d) ?
Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=k\left(x-1\right)+2\Leftrightarrow x^2-kx+\left(k-2\right)=0\).
Ta có \(\Delta=k^2-4\left(k-2\right)=\left(k-2\right)^2+2>0\forall k\) nên phương trình trên luôn có hai nghiệm phân biệt.
Theo hệ thức Viète ta có \(\left\{{}\begin{matrix}x_1x_2=k-2\\x_1+x_2=k\end{matrix}\right.\).
Ta có \(x_1^2+y_1+x_2^2+y_2=14\)
\(\Leftrightarrow2x_1^2+2x_2^2=14\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=7\)
\(\Leftrightarrow k^2-2\left(k-2\right)=7\Leftrightarrow k^2-2k-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}k=-1\\k=3\end{matrix}\right.\).
Vậy...