\(\sqrt{\dfrac{1}{3}+\dfrac{1}{2\sqrt{3}}}+\sqrt{\dfrac{1}{3}-\dfrac{1}{2\sqrt{3}}}\)
1) \(\dfrac{2}{\sqrt{5}-2}+\dfrac{-2}{\sqrt{5}+2}\)
2) \(\dfrac{4}{1-\sqrt{3}}+\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\)
3) \(\dfrac{\sqrt{2}-1}{\sqrt{2}+1}-\dfrac{3-\sqrt{2}}{3+\sqrt{2}}\)
4) \(\dfrac{6}{1-\sqrt{3}}-\dfrac{3\sqrt{3}-3}{\sqrt{3}+1}\)
5) \(\dfrac{\sqrt{5}+\sqrt{6}}{\sqrt{5}-\sqrt{6}}+\dfrac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}\)
4: Ta có: \(\dfrac{6}{1-\sqrt{3}}-\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}\)
\(=-3-3\sqrt{3}-3\)
\(=-6-3\sqrt{3}\)
Tính:
1) \(\dfrac{3}{1-\sqrt{2}}+\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\)
2) \(\dfrac{\sqrt{5}-1}{\sqrt{5}+1}+\dfrac{6}{1-\sqrt{5}}\)
3) \(\dfrac{\sqrt{2}+\sqrt{3}}{2-\sqrt{6}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{6}+2}\)
4) \(\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}\)
5) \(\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\)
5: Ta có: \(\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\)
\(=-\sqrt{2}-\sqrt{2}\)
\(=-2\sqrt{2}\)
Tính:
1) \(\dfrac{1}{1+\sqrt{5}}+\dfrac{1}{\sqrt{5}-1}\)
2) \(\dfrac{1}{\sqrt{5}+\sqrt{3}}-\dfrac{1}{\sqrt{5}-\sqrt{3}}\)
3) \(\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}+\sqrt{2}}\)
4) \(\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{\sqrt{5}-3}\)
5) \(\dfrac{1}{\sqrt{2}-\sqrt{6}}-\dfrac{1}{\sqrt{6}+\sqrt{2}}\)
LM CHI TIẾT GIÚP MK NHÉ
4: Ta có: \(\dfrac{1}{3+\sqrt{5}}-\dfrac{1}{3-\sqrt{5}}\)
\(=\dfrac{3-\sqrt{5}-3-\sqrt{5}}{4}\)
\(=\dfrac{-\sqrt{5}}{2}\)
Tính:
1) \(\dfrac{1}{3-2\sqrt{2}}+\dfrac{1}{2+\sqrt{5}}\)
2) \(\dfrac{1}{3-2\sqrt{2}}-\dfrac{1}{3+2\sqrt{2}}\)
3) \(\dfrac{1}{\sqrt{5}-\sqrt{7}}+\dfrac{2}{1-\sqrt{7}}\)
4) \(\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}\)
5) \(-\dfrac{1}{\sqrt{2}-\sqrt{3}}\)\(-\dfrac{3}{\sqrt{18}+2\sqrt{3}}\)
1: ta có: \(\dfrac{1}{3-2\sqrt{2}}+\dfrac{1}{\sqrt{5}+2}\)
\(=3+2\sqrt{2}+\sqrt{5}-2\)
\(=2\sqrt{2}+\sqrt{5}+1\)
2: Ta có: \(\dfrac{1}{3-2\sqrt{2}}-\dfrac{1}{3+2\sqrt{2}}\)
\(=3+2\sqrt{2}-3+2\sqrt{2}\)
\(=4\sqrt{2}\)
Thực hiện phép tính
a) \(\dfrac{3}{\sqrt{2}}+\sqrt{\dfrac{1}{2}}-2\sqrt{18}+\sqrt{\left(1-\sqrt{2}\right)^2}\)
b) \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\dfrac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)
c) \(\sqrt[3]{\dfrac{3}{4}}.\sqrt[3]{\dfrac{9}{16}}\)
d) \(\dfrac{\sqrt[3]{54}}{\sqrt[3]{-2}}\)
e) \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}+7}\)
a: \(\dfrac{3}{\sqrt{2}}+\sqrt{\dfrac{1}{2}}-2\sqrt{18}+\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(=\dfrac{3}{2}\sqrt{2}+\dfrac{1}{2}\sqrt{2}-2\cdot3\sqrt{2}+\left|1-\sqrt{2}\right|\)
\(=2\sqrt{2}-6\sqrt{2}+\sqrt{2}-1=-3\sqrt{2}-1\)
b: \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)
\(=\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{18}}+\dfrac{\sqrt{3}-\sqrt{2}}{12}\)
\(=\dfrac{4\sqrt{3}+2\sqrt{2}+\sqrt{3}-\sqrt{2}}{12}\)
\(=\dfrac{5\sqrt{3}+\sqrt{2}}{12}\)
c: \(\sqrt[3]{\dfrac{3}{4}}\cdot\sqrt[3]{\dfrac{9}{16}}=\sqrt[3]{\dfrac{3}{4}\cdot\dfrac{9}{16}}=\sqrt[3]{\dfrac{27}{64}}=\dfrac{3}{4}\)
d: \(\dfrac{\sqrt[3]{54}}{\sqrt[3]{-2}}=\sqrt[3]{\dfrac{54}{-2}}=-\sqrt[3]{27}=-3\)
e: \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}+7}=0\)
rút gọn biểu thức A=\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
B=\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{24}-\sqrt{25}}\)
\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\dfrac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{1}\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right)\left(\sqrt{100}+\sqrt{99}\right)}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-\sqrt{1}=10-1=9\)
cả 2 ý bạn trục căn thức ở mấu là xong nhé:
vd: \(\dfrac{1}{\sqrt{1}+\sqrt{2}}=\dfrac{\sqrt{1}-\sqrt{2}}{-1}\). Rồi tương tự như vậy
a)\(\left(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{15}{3-\sqrt{3}}\right)\dfrac{1}{\sqrt{3}+5}\)
b)\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+3}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
a) Ta có: \(\left(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{15}{3-\sqrt{3}}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)
\(=\left(\dfrac{2\left(\sqrt{3}+1\right)}{2}-\dfrac{3\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\dfrac{15\left(3+\sqrt{3}\right)}{6}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)
\(=\left(\sqrt{3}+1-6-3\sqrt{3}+\dfrac{15}{2}+\dfrac{5}{2}\sqrt{3}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)
\(=\left(\dfrac{5}{2}+\dfrac{\sqrt{3}}{2}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)
\(=\dfrac{1}{2}\)
b) Ta có: \(\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{100}+\sqrt{99}}\)
\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{99}+\sqrt{100}\)
=-1+10=9
\(\dfrac{\sqrt{6}-\sqrt{3}}{\sqrt{2}-1}+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}+\dfrac{2}{\sqrt{2}+1}-\dfrac{4}{\sqrt{2}}\)
\(\dfrac{4}{\sqrt{5}+1}+\dfrac{5}{\sqrt{5}+2}+\dfrac{5}{\sqrt{5}+3}\)
\(\dfrac{\sqrt{6}-\sqrt{3}}{\sqrt{2}-1}+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}+\dfrac{2}{\sqrt{2}+1}-\dfrac{4}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}+\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}+\dfrac{2\sqrt{2}}{2+\sqrt{2}}-\dfrac{4\sqrt{2}+4}{2+\sqrt{2}}\)
\(=\sqrt{3}+\sqrt{3}+\dfrac{-2\sqrt{2}-4}{2+\sqrt{2}}\)
\(=2\sqrt{3}+\dfrac{-2\left(2+\sqrt{2}\right)}{2+\sqrt{2}}\)
\(=2\sqrt{3}-2\)
\(------\)
\(\dfrac{4}{\sqrt{5}+1}+\dfrac{5}{\sqrt{5}+2}+\dfrac{5}{\sqrt{5}+3}\)
\(=\dfrac{4\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}+\dfrac{5\left(\sqrt{5}-2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}+\dfrac{5\left(\sqrt{5}-3\right)}{\left(\sqrt{5}+3\right)\left(\sqrt{5}-3\right)}\)
\(=\dfrac{4\sqrt{5}-4}{5-1}+\dfrac{5\sqrt{5}-10}{5-4}+\dfrac{5\sqrt{5}-15}{5-9}\)
\(=5\sqrt{5}-10+\left(\dfrac{4\sqrt{5}-4}{4}+\dfrac{5\sqrt{5}-15}{-4}\right)\)
\(=\dfrac{4\cdot\left(5\sqrt{5}-10\right)}{4}+\left(\dfrac{4\sqrt{5}-4}{4}-\dfrac{5\sqrt{5}-15}{4}\right)\)
\(=\dfrac{20\sqrt{5}-40}{4}+\dfrac{-\sqrt{5}+11}{4}\)
\(=\dfrac{19\sqrt{5}-29}{4}\)
#Ayumu
Làm mất căn mẫu và thu gọn
1) \(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
2) \(\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
3) \(\left(\dfrac{3\sqrt{125}}{15}-\dfrac{10-4\sqrt{5}}{\sqrt{5}-2}\right)\dfrac{1}{\sqrt{5}}\)
4) \(\dfrac{1}{1+\sqrt{2}}-\dfrac{1}{1-\sqrt{2}}\)
5) \(\dfrac{1}{3+\sqrt{5}}-\dfrac{1}{\sqrt{5}-3}\)
6) \(\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}\)
7) \(\dfrac{4}{1-\sqrt{3}}+\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\)
8) \(\dfrac{\sqrt{2}-1}{\sqrt{2}+1}-\dfrac{3}{\sqrt{2}-1}\)
9) \(\dfrac{\sqrt{2}}{\sqrt{\sqrt{2}+1}-1}-\dfrac{\sqrt{2}}{\sqrt{\sqrt{2}+1}+1}\)
10) \(\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}-\dfrac{1}{2-\sqrt{3}}\)
11) \(\dfrac{5}{1+\sqrt{6}}-\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}\)
12) \(\dfrac{5}{3-\sqrt{7}}-\dfrac{3}{\sqrt{2}+\sqrt{3}}+\dfrac{-1}{\sqrt{2}-1}\)
Giúp em giải với ạ! Help me~!
bạn nên tự nghiên cứu rồi giải đi chứ bạn đưa 1 loạt thế thì ai rảnh mà giải, với lại cứ bài gì không biết chưa chịu suy nghĩ đã hỏi rồi thì tiến bộ sao được, đúng không
Tính
\(\dfrac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
\(\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2}{\sqrt{6}}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
\(\dfrac{1+\dfrac{\sqrt{3}}{2}}{1+\sqrt{1+\dfrac{\sqrt{3}}{2}}}+\dfrac{1-\dfrac{\sqrt{3}}{2}}{1-\sqrt{1-\dfrac{\sqrt{3}}{2}}}\)
a) \(\dfrac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
\(=\dfrac{\left(245-100\sqrt{6}+98\sqrt{6}-240\right)\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}}{9\sqrt{3}-11\sqrt{2}}\)
\(=\dfrac{\left(5-2\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)}{9\sqrt{3}-11\sqrt{2}}\)
\(=\dfrac{5\sqrt{3}-5\sqrt{2}-2\sqrt{18}+2\sqrt{12}}{9\sqrt{3}-11\sqrt{2}}\)
\(=\dfrac{5\sqrt{3}-5\sqrt{2}-6\sqrt{2}+4\sqrt{3}}{9\sqrt{3}-11\sqrt{2}}\)
\(=\dfrac{9\sqrt{3}-11\sqrt{2}}{9\sqrt{3}-11\sqrt{2}}\)
\(=1\)
b)
\(\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2}{\sqrt{6}}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2\sqrt{6}}{6}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{\sqrt{6}}{3}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{3\sqrt{3\left(2+\sqrt{3}\right)}-2\sqrt{18}+3\sqrt{2+\sqrt{3}}}{6\sqrt{3}}}\)
\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{3\sqrt{6+3\sqrt{3}-6\sqrt{2}+3\sqrt{2+\sqrt{3}}}}{6\sqrt{3}}}\)
\(=\dfrac{3\sqrt{\left(2+\sqrt{3}\right)\cdot3}}{3\sqrt{6+3\sqrt{3}}-6\sqrt{2}+3\sqrt{2+\sqrt{3}}}\)
\(=\dfrac{3\sqrt{\left(2+\sqrt{3}\right)\cdot3}}{3\left(\sqrt{6+3\sqrt{3}}-2\sqrt{2}+\sqrt{2+\sqrt{3}}\right)}\)
\(=\dfrac{\sqrt{\left(2+\sqrt{3}\right)\cdot3}}{\sqrt{6+3\sqrt{3}}-2\sqrt{2}+\sqrt{2+\sqrt{3}}}\)
\(=\dfrac{\sqrt{6+3\sqrt{3}}}{\sqrt{6+3\sqrt{3}}-2\sqrt{2}+\sqrt{2+\sqrt{3}}}\)
\(=\dfrac{\sqrt{\left(6+3\sqrt{3}\right)\left(-\sqrt{3}+2+\sqrt{3}\right)}}{-2\sqrt{3}}\)
\(=\dfrac{\sqrt{\left(6+3\sqrt{3}\right)\cdot2}}{-2\sqrt{3}}\)
\(=\dfrac{\sqrt{12+6\sqrt{3}}}{-2\sqrt{3}}\)
\(=\dfrac{\sqrt{\left(3+\sqrt{3}\right)^2}}{-2\sqrt{3}}\)
\(=\dfrac{3+\sqrt{3}}{-2\sqrt{3}}\)
\(=-\dfrac{\left(3+\sqrt{3}\right)\sqrt{3}}{6}\)
\(=-\dfrac{3\sqrt{3}+3}{6}\)
\(=-\dfrac{3\left(\sqrt{3}+3\right)}{6}\)
\(=-\dfrac{\sqrt{3}+1}{2}\)
\(\dfrac{1+\dfrac{\sqrt{3}}{2}}{1+\sqrt{1+\dfrac{\sqrt{3}}{2}}}+\dfrac{1-\dfrac{\sqrt{3}}{2}}{1-\sqrt{1-\dfrac{\sqrt{3}}{2}}}\)
\(=\dfrac{\left(1+\dfrac{\sqrt{3}}{2}\right)\cdot\left(1-\sqrt{1+\dfrac{\sqrt{3}}{2}}\right)}{-\dfrac{\sqrt{3}}{2}}+\dfrac{\left(1-\dfrac{\sqrt{3}}{2}\right)\cdot\left(1+\sqrt{1-\dfrac{\sqrt{3}}{2}}\right)}{\dfrac{\sqrt{3}}{2}}\)
\(=\dfrac{1-\sqrt{1+\dfrac{\sqrt{3}}{2}}+\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3\left(1+\dfrac{\sqrt{3}}{2}\right)}}{2}}{-\dfrac{\sqrt{3}}{2}}+\dfrac{\left(1-\dfrac{\sqrt{3}}{2}\right)\cdot\left(1+\sqrt{1-\dfrac{\sqrt{3}}{2}}\right)\cdot2}{\sqrt{3}}\)
\(=\dfrac{1-\sqrt{1+\dfrac{\sqrt{3}}{2}}+\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3+\dfrac{3\sqrt{3}}{2}}}{2}}{-\dfrac{\sqrt{3}}{2}}+\dfrac{\left(2-\sqrt{3}\right)\cdot\left(1+\sqrt{1-\dfrac{\sqrt{3}}{2}}\right)}{\sqrt{3}}\)
\(=\dfrac{1-\sqrt{1+\dfrac{\sqrt{3}}{2}}+\dfrac{\sqrt{3}-\sqrt{3+\dfrac{3\sqrt{3}}{2}}}{2}}{\sqrt{3}}+\dfrac{2+2\sqrt{1-\dfrac{\sqrt{3}}{2}}-\sqrt{3}-\sqrt{3-\dfrac{3\sqrt{3}}{2}}}{\sqrt{3}}\)
\(=\dfrac{-\left(2-2\sqrt{1+\dfrac{\sqrt{3}}{2}}+\sqrt{3}-\sqrt{3+\dfrac{3\sqrt{3}}{2}}\right)+2\cdot2\sqrt{1-\dfrac{\sqrt{3}}{2}}-\sqrt{3}-\sqrt{3-\dfrac{3\sqrt{2}}{2}}}{\sqrt{3}}\)
\(=1\)