Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
IM
Xem chi tiết
BD
Xem chi tiết
NM
Xem chi tiết
HK
1 tháng 2 2016 lúc 19:57

bai toan nay minh phai bo tay

Bình luận (0)
TN
Xem chi tiết
NL
4 tháng 1 2024 lúc 7:51

Gọi \(d=ƯC\left(n+1;2n+3\right)\) với \(d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow2n+3-2\left(n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy n+1 và 2n+3 nguyên tố cùng nhau với mọi \(n\in N\)

Bình luận (0)
HC
Xem chi tiết
AH
6 tháng 2 2024 lúc 0:05

Lời giải:

$p>3$ và $p$ nguyên tố nên $p$ lẻ

$\Rightarrow p+1$ chẵn $\Rightarrow p+1\vdots 2(1)$

Mặt khác:

$p>3$ và $p$ nguyên tố nên $p$ không chia hết cho $3$

$\Rightarrow p=3k+1$ hoặc $p=3k+2$ với $k$ tự nhiên.

Nếu $p=3k+1$ thì $2p+1=2(3k+1)+1=3(2k+1)\vdots 3$. Mà $2p+1>3$ nên không thể là số nguyên tố (trái đề bài) 

$\Rightarrow p=3k+2$
Khi đó:

$p+1=3k+3\vdots 3(2)$
Từ $(1); (2)$, mà $(2,3)=1$ nên $p+1\vdots (2.3)$ hay $p+1\vdots 6$

Bình luận (0)
TD
Xem chi tiết
NM
17 tháng 2 2018 lúc 11:45

Cho tam giác ABC cân tại A (AB=AC).Gọi D, E lần lượt là trung điểm của AB và AC.Gọi K là giao điểm của BE và CD.Chứng minh AK là tia phân giác của góc BAC.

Bình luận (0)
DH
17 tháng 2 2018 lúc 11:49

Đề sai nhé, với mọi n khác 1 thì 2 số ko nguyên tố cùng nhau nha

Bình luận (0)
TN
Xem chi tiết
NL
4 tháng 1 2024 lúc 7:48

Gọi \(d=ƯC\left(n+3;2n+5\right)\) với \(d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}n+3⋮d\\2n+5⋮d\end{matrix}\right.\) \(\Rightarrow2\left(n+3\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(n+3\) và \(2n+5\) nguyên tố cùng nhau với mọi số tự nhiên n

Bình luận (0)
NN
4 tháng 1 2024 lúc 7:58

Gọi d = ƯCLN(n + 3, 2n + 50 với d ∈ N

 

 ⇒2(�+3)−(2�+5)⋮�

⇒1⋮�⇒�=1

Vậy �+3 và 2�+5 nguyên tố cùng nhau với mọi số tự nhiên n

 Đúng(0)
Bình luận (0)
LQ
Xem chi tiết
TN
Xem chi tiết
NL
4 tháng 1 2024 lúc 7:50

Gọi \(d=ƯC\left(2n+3;4n+8\right)\) với \(d\in N\)

Do \(2n+3\) luôn lẻ \(\Rightarrow d\) lẻ

\(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\) \(\Rightarrow4n+8-2\left(2n+3\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

Mà d lẻ \(\Rightarrow d=1\)

Vậy 2n+3 và 4n+8 nguyên tố cùng nhau với mọi \(n\in N\)

Bình luận (0)