\(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\dfrac{\left(n+1\right)n}{2}\right]^2=9730^2\)
n(n+1)=19460=139.140
=> n= 139
139 là số nguyên tố không ? bạn?
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\dfrac{\left(n+1\right)n}{2}\right]^2=9730^2\)
n(n+1)=19460=139.140
=> n= 139
139 là số nguyên tố không ? bạn?
1. Cho a là số nguyên tố lớn hơn 3. Chứng minh rằng \(a^2-1\) chia hết cho 24.
2. Chứng minh n2 + 7n + 22 không chia hết cho 9
Cho đường tròn (O) có 2 đường kính AB, CD vuông góc với nhau. Trên cung nhỏ BC lấy điểm M khác B, C . Gọi P và Q lần lượt là giao điểm của AM với CD và BC.
1, Chứng minh rằng tứ giác BMPO nội tiếp và QM . QA = QB . QC
2, Gọi E và F lần lượt là giao điểm của MD với AB, BC. H là trung điểm của FC. Chứng minh rằng tứ giác CMFP nội tiếp và \(CP=\sqrt{2}HF\)
3, Chứng minh rằng khoảng cách từ điểm Q đến 3 cạnh của tam giác EMC là bằng nhau
Bài 1. Giải phương trình :
\(\sqrt{x-1}+\sqrt{3-x}=3x^2-4x-2\)
Bài 2. Tìm tất cả các bộ 3 số nguyên không âm (x ; y; z) thoả mãn đẳng thức :
\(2012^x+2013^y=2014^z\)
Bài 3. Cho phương trình bậc hai : \(x^2+\left(m+n\right)+m+1=0\) với m và n là các số nguyên trong đó \(m\ne1\).
a) Chứng minh rằng : Với mọi giá trị của m, luôn có 1 giá trị của n không đổi để phương trình đã cho có nghiệm x nguyên.
b) Chứng minh rằng : Khi phương trình đã cho có hai nghiệm nguyên thì \(\left(m+n\right)^2+m^2\) là hợp số.
HELP MEEEEEEEEEEEEEEEE !!! PLEASE !!!
1. Chứng minh rằng \(5^n\left(5^n+1\right)-6^n\left(2^n+3^n\right)⋮91\) với mọi n thuộc N*.
2. Chứng minh rằng với a, b, c, d là các số nguyên lẻ và \(a^5+b^5+c^5+d^5⋮240\) thì \(a+b+c+d⋮240\)
Cho a,b,c là các số thực dương , n∈ R và \(abc=1\)
\(P=\)\(\dfrac{1}{a^n+2b^n+3}+\dfrac{1}{b^n+2c^n+3}+\dfrac{1}{c^n+2a^n+3}\)
a) Tìm \(Max_P=?\)
b) Nếu a,b,c luôn thay đổi , n thay đổi đều trên a,b,c tìm \(Min_P=?\)
Chứng minh rằng với mọi n nguyên dương ta có: \(\frac{1}{2}+\frac{1}{3\sqrt[3]{2}}+...+\frac{1}{\left(X+1\right)\sqrt[3]{X}}\)
Bài 1. Cho tam giác AMB cân tại M nội tiếp đường tròn (O:R). Kẻ MH vuông góc với AB(H thuộc AB), MH cắt (O) tại N. Biết MA = 10cm, AB = 12cm.
1)Tính MH và bán kính R của đường tròn.
2)Trên tia đối của tia BA lấy điểm C, MC cắt đường tròn tại D, ND cắt AB tại E. Chứng minh
a, Tứ giác MDEH nội tiếp.
b, NB2 = NE.ND và AC.BE = BC.AE.
3)Chứng minh NB tiếp xúc với đường tròn ngoại tiếp tam giác BDE.
Bài 2. Cho nửa đường tròn (O) đường kính AB=2R. Điểm M di động trên đường tròn. C là trung đỉểm dây AM. Đường thẳng d là tiếp tuyến với nửa đường tròn tại B. Tia AM cắt d tại điểm N. Đường thẳng OC cắt d tại E.
1) CHứng minh OCNB nội tiếp.
2) Chứng minh AC.AN = AO.AB.
3) Chứng minh NO _|_ AE.
4) Tìm vị trí điểm M sao cho 2.AM+AN nhỏ nhất.
1.Cho đa giác đều A1A2...A1990 có 1990 cạnh đều bằng 1. M là 1 điểm bất kì trên đường tròn ngoại tiếp đa giác . Gọi khoảng cách từ M đến các đỉnh của đa giác lần lượt là a1,a2, ... ,a1990. Chứng minh rằng \(a^2_1+a_2^2+...+a_{1990}\ge1990\).
2. Chứng minh rằng với mọi tam giác ta luôn có: \(R\ge2r\)(R, r lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp)
3. Cho đường tròn đường kính bằng 2 và n điểm A1,A2,...,An trên mặt phẳng . Chứng minh rằng ta có thể tìm được 1 điểm M trên đường tròn sao cho MA1+MA2+...+MAn \(\ge n\).
4. Gỉa sử a,b,c là các số dương và với số tự nhiên n bất kì có thể lập được 1 tam giác mà độ dài các cạnh lần lượt là an,bn,cn. Chứng minh rằng 2 trong 3 số a,b,c phải bằng nhau.
5. Trên mặt bàn đặt 50 cái đồng hồ có kim giờ và kim phút. Chứng minh rằng có 1 thời điểm nào đó tổng khoảng cách từ tâm mặt bàn đến các điểm đầu của kim phút lớn hơn tổng khoảng cách từ tâm mặt bàn đến tâm của các đồng hồ.( Xem mỗi đồng hồ là 1 hình tròn vẽ trên mặt bàn).
Cho 3 số x,y,z thỏa mãn điều kiện: \(2x^3=9y^3=45\)và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\). Chứng minh rằng; \(\sqrt[3]{2x^2+9y^2+45z^2}=\sqrt[3]{2}+\sqrt[3]{9}+\sqrt[3]{45}\)