Những câu hỏi liên quan
QL
Xem chi tiết
HM
20 tháng 9 2023 lúc 22:05

a) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)

Ta có \(\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\)\( \Rightarrow d(a + b) = b(c + d)\)\( \Rightarrow ad + bd = bc + bd\)

\( \Rightarrow ad = bc\) (luôn đúng)

\( \Rightarrow \dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\) 

b) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)

Ta có: \(\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\)

\(\begin{array}{l} \Rightarrow d(a - b) = b(c - d)\\ \Leftrightarrow ad - bd = bc - bd\\ \Leftrightarrow ad = bc\end{array}\) ( luôn đúng)

Vậy \(\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\) 

c)  Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)

Ta có: \(\dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\)

\(\begin{array}{l} \Rightarrow a(c + d) = c(a + b)\\ \Leftrightarrow ac + ad = ac + bc\\ \Leftrightarrow ad = bc\end{array}\) (luôn đúng)

Vậy \(\dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\)

Bình luận (0)
H24
Xem chi tiết
NM
14 tháng 10 2021 lúc 16:49

a, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

b, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{3a}{4c}=\dfrac{4b}{4d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

 

 

Bình luận (0)
NM
14 tháng 10 2021 lúc 16:54

c, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\)

Do đó \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

d, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

Do đó \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

Bình luận (0)
VH
Xem chi tiết
HL
19 tháng 9 2017 lúc 8:00

Lần sau khi hỏi nhớ tìm xem có câu nào tương tự không nhé.

Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

Vậy nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) ( a khác b, c khác d ) thì \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

Bình luận (1)
NT
8 tháng 10 2018 lúc 20:47

ta có : \(\dfrac{a}{b}.\dfrac{c}{d}=\dfrac{b}{a}.\dfrac{d}{c}=1-\dfrac{b}{a}=1-\dfrac{d}{c}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

Bình luận (0)
NL
Xem chi tiết
NK
4 tháng 10 2023 lúc 19:05

Ta đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(a=b\times k\) ; \(c=d\times k\) 

a) Ta có:  \(\dfrac{a}{b}=\dfrac{b\times k}{d\times k}=\dfrac{b}{d}\)  (1)

=> \(\dfrac{a+b}{c+d}=\dfrac{b\times k+b}{d\times k+d}=\dfrac{b\times\left(k+1\right)}{d\times\left(k+1\right)}=\dfrac{b}{d}\) (2)

Từ (1),(2) => đpcm

b)

\(\dfrac{a+b}{a}=\dfrac{b\times k+b}{b\times k}=\dfrac{b\times\left(k+1\right)}{b\times k}=\dfrac{k+1}{k}\) (1)

\(\dfrac{c+d}{c}=\dfrac{d\times k+d}{d\times k}=\dfrac{d\times\left(k+1\right)}{d\times k}=\dfrac{k+1}{k}\) (2)

Từ (1),(2) => đpcm

 

Bình luận (0)
SK
Xem chi tiết
LV
18 tháng 4 2017 lúc 14:46

Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\) suy ra \(\dfrac{a}{c}=\dfrac{b}{d}\)

Theo tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Suy ra: \(\dfrac{a+b}{a-c}=\dfrac{c+d}{c-d}\)


Bình luận (0)
TN
11 tháng 7 2017 lúc 14:42

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk\)\(c=dk\)

Nên \(\dfrac{a+b}{c-d}=\dfrac{bk+b}{dk-d}=\dfrac{b\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\Rightarrow\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) (với \(a-b\ne0,c-d\ne0\))

Vậy \(\dfrac{a}{b}=\dfrac{c}{d}thì\)\(\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) ( \(a-b\ne0,c-d\ne0\))

Bình luận (0)
HD
13 tháng 10 2018 lúc 9:09

Giải bài 63 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

Theo tính chất của dãy tỉ số bằng nhau ta có

Giải bài 63 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

Bình luận (0)
NN
Xem chi tiết
DH
14 tháng 7 2021 lúc 9:16

undefined

Bình luận (0)
MY
14 tháng 7 2021 lúc 9:19

\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{b}+1=\dfrac{c}{d}+1=>\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{b}-1=\dfrac{c}{d}-1=>\dfrac{a-b}{b}=\dfrac{c-d}{d}\)

\(\dfrac{a}{b}=\dfrac{c}{d}=>ad=cb=>ad+ac=cb+ac\)

\(=>a\left(c+d\right)=c\left(a+b\right)=>\dfrac{a}{c}=\dfrac{a+b}{c+d}=>\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

Bình luận (0)
NT
14 tháng 7 2021 lúc 15:09

a) \(\dfrac{a}{b}=\dfrac{c}{d}\)

nên \(\dfrac{a}{b}+1=\dfrac{c}{d}+1\)

hay \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

b) \(\dfrac{a}{b}=\dfrac{c}{d}\)

nên \(\dfrac{a}{b}-1=\dfrac{c}{d}-1\)

hay \(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)

Bình luận (0)
MP
Xem chi tiết
NT
5 tháng 1 2022 lúc 21:08

\(\Leftrightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{a}{b}=\dfrac{c}{d}\)

Bình luận (0)
AH
5 tháng 1 2022 lúc 21:08

Lời giải:

$\frac{a+b}{a-b}=\frac{c+d}{c-d}$

$\Rightarrow (a+b)(c-d)=(a-b)(c+d)$

$\Rightarrow ac-ad+bc-bd=ac+ad-bc-bd$

$\Rightarrow 2ad=2bc$

$\Rightarrow ad=bc$

$\Rightarrow \frac{a}{b}=\frac{c}{d}$ (đpcm)

Bình luận (1)
KS
5 tháng 1 2022 lúc 21:17

\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{2a}{2c}=\dfrac{a}{c}\left(1\right)\)

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b-a+b}{c+d-c+d}=\dfrac{2b}{2d}=\dfrac{b}{d}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

Bình luận (0)
DX
Xem chi tiết
TC
9 tháng 8 2021 lúc 16:50

undefined

Bình luận (0)
HS
Xem chi tiết
TT
22 tháng 4 2018 lúc 16:40

a, ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}\)

áp dụng tính chất dă y tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}=\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\)

\(\Rightarrow\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\Rightarrow\dfrac{a+2b}{2a-b}=\dfrac{c+2d}{2c-d}\) (ĐPCM)

Bình luận (0)
TT
22 tháng 4 2018 lúc 16:48

b, ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}\)

áp dụng tính chất dă tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}=\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)

\(\Rightarrow\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)

\(\Rightarrow\left(a+3c\right)\left(b-d\right)=\left(b+3d\right)\left(a-c\right)\) (ĐPCM)

Bình luận (0)