Bài 8: Tính chất của dãy tỉ số bằng nhau

VH

Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) ( a khác b , c khác d ) ta có thể suy ra tỉ lệ thức \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

HL
19 tháng 9 2017 lúc 8:00

Lần sau khi hỏi nhớ tìm xem có câu nào tương tự không nhé.

Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

Vậy nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) ( a khác b, c khác d ) thì \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

Bình luận (1)
NT
8 tháng 10 2018 lúc 20:47

ta có : \(\dfrac{a}{b}.\dfrac{c}{d}=\dfrac{b}{a}.\dfrac{d}{c}=1-\dfrac{b}{a}=1-\dfrac{d}{c}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
SK
Xem chi tiết
CV
Xem chi tiết
VN
Xem chi tiết
ND
Xem chi tiết
PP
Xem chi tiết
H24
Xem chi tiết
MV
Xem chi tiết
DT
Xem chi tiết