Bài 8: Tính chất của dãy tỉ số bằng nhau

SK

Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d};\left(a-b\ne0;c-d\ne0\right)\) ta có thể suy ra tỉ lệ thức \(\dfrac{a+b}{c-b}=\dfrac{c+d}{c-d}\) ?

LV
18 tháng 4 2017 lúc 14:46

Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\) suy ra \(\dfrac{a}{c}=\dfrac{b}{d}\)

Theo tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Suy ra: \(\dfrac{a+b}{a-c}=\dfrac{c+d}{c-d}\)


Bình luận (0)
TN
11 tháng 7 2017 lúc 14:42

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk\)\(c=dk\)

Nên \(\dfrac{a+b}{c-d}=\dfrac{bk+b}{dk-d}=\dfrac{b\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\Rightarrow\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) (với \(a-b\ne0,c-d\ne0\))

Vậy \(\dfrac{a}{b}=\dfrac{c}{d}thì\)\(\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) ( \(a-b\ne0,c-d\ne0\))

Bình luận (0)
HD
13 tháng 10 2018 lúc 9:09

Giải bài 63 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

Theo tính chất của dãy tỉ số bằng nhau ta có

Giải bài 63 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

Bình luận (0)

Các câu hỏi tương tự
CV
Xem chi tiết
NH
Xem chi tiết
VH
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
VV
Xem chi tiết
PP
Xem chi tiết
H24
Xem chi tiết
MV
Xem chi tiết