Những câu hỏi liên quan
NY
Xem chi tiết
PD
27 tháng 3 2018 lúc 20:45

a)\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

b,c tương tự

d)Áp dụng bđt AM-GM ta được

\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4a^4b^4c^4}=4a^2bc\)

TT\(\Rightarrow a^4+b^4+b^4+c^4\ge4ab^2c\)

\(a^4+b^4+c^4+c^4\ge4abc^2\)

Cộng vế theo vế ta được \(4\left(a^4+b^4+c^4\right)\ge4\left(a^2bc+ab^2c+abc^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\left(đpcm\right)\)

Bình luận (3)
ND
27 tháng 3 2018 lúc 21:05

d)

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

\(\Leftrightarrow a^4+b^4+c^4-a^2bc-ab^2c-abc^2\ge0\)

\(\Leftrightarrow2a^4+2b^4+2c^4-2a^2bc-2ab^2c-2abc^2\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+2a^2b^2+\left(b^2-c^2\right)^2+2b^2c^2+\left(c^2-a^2\right)^2+2a^2c^2-2a^2bc-2b^2ac-2c^2ab\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2+\left(a^2b^2+b^2c^2-2b^2ac\right)+\left(b^2c^2+c^2a^2-2c^2abc\right)+\left(a^2b^2+c^2a^2-2a^2ab\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2+\left(ab-bc\right)^2+\left(bc-ac\right)^2+\left(ab-ac\right)^2\ge0\)

Luôn đúng với mọi a , b , c

Bình luận (0)
TN
Xem chi tiết
NL
9 tháng 2 2020 lúc 6:26

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

a/ Từ BĐT ban đầu ta có:

\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
NL
9 tháng 2 2020 lúc 6:31

b/ Chia 2 vế của BĐT ở câu a cho 9 ta được:

\(\frac{a^2+b^2+c^2}{3}\ge\frac{\left(a+b+c\right)^2}{9}=\left(\frac{a+b+c}{3}\right)^2\) (đpcm)

c/ Cộng 2 vế của BĐT ban đầu với \(2ab+2bc+2ca\) ta được:

\(a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

d/ Áp dụng BĐT ban đầu cho các số \(a^2;b^2;c^2\) ta được:

\(\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\ge a^2b^2+b^2c^2+c^2a^2\)

Mặt khác ta cũng có:

\(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\ge ab.bc+bc.ca+ab+ca=abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
9 tháng 2 2020 lúc 6:33

e/ Chia 2 vế của BĐT ở câu c cho 9 ta được:

\(\frac{\left(a+b+c\right)^2}{9}\ge\frac{ab+bc+ca}{3}\)

Khai căn 2 vế: \(\Rightarrow\frac{a+b+c}{3}\ge\sqrt{\frac{ab+bc+ca}{3}}\)

f/ Áp dụng BĐT ở câu d:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)=abc\) (do \(a+b+c=1\))

Bình luận (0)
 Khách vãng lai đã xóa
TQ
Xem chi tiết
TD
Xem chi tiết
DD
10 tháng 8 2018 lúc 10:07

d đâu ra vậy bạn ?

Bình luận (0)
DD
10 tháng 8 2018 lúc 10:15

Đặt \(A=\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\Rightarrow A^2=\left(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\right)^2\)

Áp dụng BĐT Bu - nhi - a - cốp - xki ta có :

\(A^2=\left(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\right)^2\le\left(1^2+1^2+1^2\right)\left(4a+3+4b+3+4c+3\right)=3\left[4\left(a+b+c\right)+9\right]=3\left(12+9\right)=63\)

\(\Rightarrow A=\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\le\sqrt{63}=3\sqrt{7}\)

Dấu \("="\) xảy ra khi \(a=b=c=1\)

Bình luận (2)
KJ
Xem chi tiết
KD
7 tháng 1 2020 lúc 5:55

a2+b2+c2ab+bc+caa2+b2+c2≥ab+bc+ca

2a2+2b2+2c22ab+2bc+2ca⇔2a2+2b2+2c2≥2ab+2bc+2ca

a22ab+b2+b22bc+c2+c22ca+a20⇔a2−2ab+b2+b2−2bc+c2+c2−2ca+a2≥0

(ab)2+(bc)2+(ca)20⇔(a−b)2+(b−c)2+(c−a)2≥0

(Luôn đúng)

Vậy ta có đpcm.

Đẳng thức khi a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
AR
Xem chi tiết
ND
Xem chi tiết
PP
2 tháng 1 2019 lúc 22:17

áp dụng bđt cô si 

a+ a4 +a+1 >= 4a3 <=> 3a4 + 1 >= 4a3

cmtt với b và c ta có :

3b4 +1 >= 4b3

3c + 1  >= 4c3

=> 3a4 +3b4 +3c4  >= 3a3 +3b3 +3c3 +(a3 +b3 +c3 - 3) = 3a3 + 3b3 +3c

đpcm 

dấu bằng xảy ra khi a = b = c = 1

Bình luận (0)
ND
7 tháng 1 2019 lúc 20:42

có gì đó sai sai ở dòng thứ 3 từ dưới lên bn à

Bình luận (0)
DP
Xem chi tiết
PQ
25 tháng 1 2020 lúc 21:05

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
25 tháng 1 2020 lúc 22:23

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
26 tháng 1 2020 lúc 8:21

Cho o dong 2 la x,y,z nhe,ghi nham

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết