Những câu hỏi liên quan
BB
Xem chi tiết
OY
18 tháng 10 2021 lúc 19:46

Ta có: \(\left(\sqrt{2015}+\sqrt{2018}\right)^2=4033+2\sqrt{2015.2018}\)

\(\left(\sqrt{2016}+\sqrt{2017}\right)^2=4033+2\sqrt{2016.2017}\)

\(2015.2018=2015.2017+2015=2017\left(2015+1\right)-2017+2015=2017.2016-2\)\(\Rightarrow2015.2018< 2016.2017\)

\(\Rightarrow4033+2\sqrt{2015.2018}< 4033+2\sqrt{2016.2017}\)

\(\Rightarrow\sqrt{2015}+\sqrt{2018}< \sqrt{2016}+\sqrt{2017}\left(đpcm\right)\)

Bình luận (1)
H24
18 tháng 10 2021 lúc 19:46

Đặt \(A=\sqrt{2015}+\sqrt{2018}\Rightarrow A^{^2}=4033+2\sqrt{2015.2018}\)

\(B=\sqrt{2016}+\sqrt{2017}\Rightarrow B^{^2}=4033+2\sqrt{2016.2017}\)

Ta có: 2015.2018 = 2015.2017 + 2015

2016.2017 = 2015.2017 + 2017

Dễ dàng thấy được 2015.2018 < 2016.2017 => A2 < B2

=> A < B

Bình luận (0)
TC
18 tháng 10 2021 lúc 20:06

Để phần so sánh chặt chẽ hơn, bạn có thể dùng cách này.

undefined

Bình luận (0)
H24
Xem chi tiết
H24
4 tháng 12 2017 lúc 14:40

Trả lời nhanh dum minh cai

Bình luận (0)
KP
Xem chi tiết
CL
8 tháng 9 2019 lúc 20:41

A=\(\frac{1}{\sqrt{2018}+\sqrt{2017}}\)

B=\(\frac{1}{\sqrt{2016}+\sqrt{2015}}\)

=> A<B

Bình luận (0)
HP
Xem chi tiết
BH
21 tháng 8 2019 lúc 20:40

\(\left(\sqrt{2015}+\sqrt{2018}\right)^2=4033+2\sqrt{2015\cdot2018}\)

\(\left(\sqrt{2016}+\sqrt{2017}\right)^2=4033+2\sqrt{2016\cdot2017}\)

\(2015\cdot2018=2015\cdot2017+2015=2017\cdot\left(2015+1\right)-2017+2015\)

\(=2017\cdot2016-2\)

\(\Rightarrow2015\cdot2018< 2016\cdot2017\)

\(\Rightarrow\sqrt{2015}+\sqrt{2018}< \sqrt{2016}+\sqrt{2017}\)

Bình luận (0)
BB
Xem chi tiết
NM
8 tháng 10 2021 lúc 7:21

Áp dụng BĐT Cauchy–Schwarz ta được:

\(x=\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2018}+\sqrt{2017}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2018}+\sqrt{2017}=y\)

Dấu \("="\Leftrightarrow\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vô.lí\right)\)

Vậy đẳng thức ko xảy ra hay \(x>y\)

Bình luận (0)
HP
Xem chi tiết
BH
21 tháng 8 2019 lúc 20:40

\(\left(\sqrt{2015}+\sqrt{2018}\right)^2=4033+2\sqrt{2015\cdot2018}\)

\(\left(\sqrt{2016}+\sqrt{2017}\right)^2=4033+2\sqrt{2016\cdot2017}\)

\(2015\cdot2018=2015\cdot2017+2015=2017\cdot\left(2015+1\right)-2017+2015\)

\(=2017\cdot2016-2\)

\(\Rightarrow2015\cdot2018< 2016\cdot2017\)

\(\Rightarrow\sqrt{2015}+\sqrt{2018}< \sqrt{2016}+\sqrt{2017}\)

Bình luận (0)
MQ
9 tháng 8 2020 lúc 9:50

có bạn nào giải thích cho mình từ đoạn 2015.2018=2015.2017+2015 trở đi được k? mình cảm ơn

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
DH
1 tháng 8 2018 lúc 8:19

a) Ta có: \(\left(\sqrt{2017}+\sqrt{2019}\right)^2=2017+2019+2\sqrt{2017.2019}\)

                                                              \(=4036+2\sqrt{\left(2018-1\right).\left(2018+1\right)}\)

                                                                \(=4036+2\sqrt{2018^2-1}< 4036+2\sqrt{2018^2}=2018.4=\left(2\sqrt{2018}\right)^2\)

Vậy x < y

Bình luận (0)
NL
Xem chi tiết
H24
7 tháng 11 2017 lúc 17:17

Trước tiên để tính diện tích hình thang chúng ta có công thức Chiều cao nhân với trung bình cộng hai cạnh đáy.

cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 2

S = h * (a+b)1/2

Trong đó

a: Cạnh đáy 1

b: Cạnh đáy 2

h: Chiều cao hạ từ cạnh đấy a xuống b hoặc ngược lại(khoảng cách giữa 2 cạnh đáy)

Ví dụ: giả sử ta có hình thang ABCD với các cạnh AB = 8, cạnh đáy CD = 13, chiều cao giữa 2 cạnh đáy là 7 thì chúng ta sẽ có phép tính diện tích hình thang là:

S(ABCD) = 7 * (8+13)/2 = 73.5

cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 3

Tương tự với trường hợp hình thang vuông có chiều cao AC = 8, cạnh AB = 10.9, cạnh CD = 13, chúng ta cũng tính như sau:

S(ABCD) = AC * (AB + CD)/2 = 8 * (10.9 + 13)/2 = 95.6

Bình luận (0)
H24
23 tháng 7 2018 lúc 21:14

I don't now

...............

.................

.

Bình luận (0)
PA
15 tháng 8 2018 lúc 16:28

T=1

A<B

Bình luận (0)
HT
Xem chi tiết
KS
26 tháng 7 2018 lúc 6:04

Ta có: \(\hept{\begin{cases}\sqrt{0,2}>0\\1=\sqrt{1}< \sqrt{3}\Rightarrow1-\sqrt{3}< 0\end{cases}\Rightarrow1-\sqrt{3}< \sqrt{0,2}}\)

Ta có: \(\hept{\begin{cases}\sqrt{0,5}>0\\\sqrt{3}< \sqrt{4}=2\Rightarrow\sqrt{3}-2< 0\end{cases}\Rightarrow\sqrt{0,5}>\sqrt{3}-2}\)

Bình luận (0)
A4
Xem chi tiết
NT
10 tháng 9 2023 lúc 21:40

\(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2017}+\sqrt{2016}}\)

\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

2017>2015

=>căn 2017>căn 2015

=>\(\sqrt{2017}+\sqrt{2016}>\sqrt{2016}+\sqrt{2015}\)

=>\(\dfrac{1}{\sqrt{2017}+\sqrt{2016}}< \dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

=>\(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}-\sqrt{2015}\)

Bình luận (0)