Violympic toán 9

BB

So sánh x và y trong các TH sau: \(x=\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}};y=\sqrt{2017}+\sqrt{2018}\)

NM
8 tháng 10 2021 lúc 7:21

Áp dụng BĐT Cauchy–Schwarz ta được:

\(x=\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2018}+\sqrt{2017}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2018}+\sqrt{2017}=y\)

Dấu \("="\Leftrightarrow\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vô.lí\right)\)

Vậy đẳng thức ko xảy ra hay \(x>y\)

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
CG
Xem chi tiết
PT
Xem chi tiết
NT
Xem chi tiết
GD
Xem chi tiết
VH
Xem chi tiết
NT
Xem chi tiết
DS
Xem chi tiết