So sánh: \(\dfrac{2016}{2017}\) và \(\dfrac{2017}{2018}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
so sánh
A= \(\dfrac{2016+2017}{2017+2018}\)và B=\(\dfrac{2016}{2017}+\dfrac{2017}{2018}\)
b) M=\(\dfrac{2017+2018}{2016+2017}\)và N=\(\dfrac{2017}{2016}+\dfrac{2018}{2017}\)
a, Ta có: \(\dfrac{2016}{2017+2018}< \dfrac{2016}{2017}\)
\(\dfrac{2017}{2017+2018}< \dfrac{2017}{2018}\)
\(\Rightarrow A=\dfrac{2016+2017}{2017+2018}< B=\dfrac{2016}{2017}+\dfrac{2017}{2018}\)
Vậy A < B
b, Ta có: \(\dfrac{2017}{2016+2017}< \dfrac{2017}{2016}\)
\(\dfrac{2018}{2016+2017}< \dfrac{2018}{2017}\)
\(\Rightarrow M=\dfrac{2017+2018}{2016+2017}< N=\dfrac{2017}{2016}+\dfrac{2018}{2017}\)
Vậy M < N
so sánh P và Q , bt P =\(\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\) và Q= \(\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)
Giải:
Ta có:
\(P=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)
và \(Q=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)
Vì \(\left\{{}\begin{matrix}\dfrac{2016}{2017}=\dfrac{2016}{2017}\\\dfrac{2017}{2018}=\dfrac{2017}{2018}\\\dfrac{2018}{2019}=\dfrac{2018}{2019}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)
Hay \(P=Q\)
Vậy ...
So sánh x và y trong các TH sau: \(x=\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}};y=\sqrt{2017}+\sqrt{2018}\)
Áp dụng BĐT Cauchy–Schwarz ta được:
\(x=\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2018}+\sqrt{2017}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2018}+\sqrt{2017}=y\)
Dấu \("="\Leftrightarrow\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vô.lí\right)\)
Vậy đẳng thức ko xảy ra hay \(x>y\)
so sánh \(\dfrac{2016}{2017} + \dfrac{2017}{2018} + \dfrac{2018}{2019} + \dfrac{2019}{2016}\) với 4 ???
Đặt \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)+\(\frac{2018}{2019}\)+\(\frac{2019}{2016}\) là A
A=1-\(\frac{1}{2017}\)+1-\(\frac{1}{2018}\)+1-\(\frac{1}{2019}\)+1+\(\frac{3}{2016}\)
A=4-(\(\frac{1}{2017}\)+\(\frac{1}{2018}\)+\(\frac{1}{2019}\)-\(\frac{3}{2016}\)) Do \(\frac{1}{2017}\)+\(\frac{1}{2018}\)+\(\frac{1}{2019}\)-\(\frac{3}{2016}\)<0 =>A>4So sánh \(A=\dfrac{\dfrac{1}{2017}+\dfrac{2}{2016}+\dfrac{3}{2015}+...+\dfrac{2016}{2}+\dfrac{2017}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\) và \(B=2018\)
\(A=\dfrac{\dfrac{1}{2017}+\dfrac{2}{2016}+\dfrac{3}{2015}+...+\dfrac{2016}{2}+\dfrac{2017}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{\left(\dfrac{1}{2017}+1\right)+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{3}{2015}+1\right)+...+\left(\dfrac{2016}{2}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{\dfrac{2018}{2017}+\dfrac{2018}{2016}+\dfrac{2018}{2015}+...+\dfrac{2018}{2}+\dfrac{2018}{2018}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}=2018\)
So sánh 2016/2017+2017+2018 và 2016+2017/2017+2018
so sánh : P = 2016/2017 + 2017/2018 + 2018/2019 và Q = 2016 + 2017 + 2018/2017 + 2018 + 2019
Ta có :
\(\frac{2016}{2017}>\frac{2016}{2017+2018+2019}\)
\(\frac{2017}{2018}>\frac{2017}{2017+2018+2019}\)
\(\frac{2018}{2019}>\frac{2018}{2017+2018+2019}\)
\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}>\) \(\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)
\(\Rightarrow P>\frac{2016+2017+2018}{2017+2018+2019}\)
\(\Rightarrow P>Q\)
Chúc bạn học tốt !!!
vì P có các số bé hơn 1 còn Q có các số lớn hơn 1 =>P<Q
Vậy P<Q.
mình làm hơi tắt xin bạn thông cảm bạn tự viết các số có trong P;Q ra nhá
Đơn giản P < Q
Vì Nhìn sơ qua ta thấy tổng P gồm các phân số bé hơn 1
Tổng Q có 3 phân số lớn hơn 1
so sánh: A=2016/2017+2017/2018 và B=2016+2017/2017+2018
Tính A và B rồi ta đi so sánh:
A = \(\frac{2016}{2017}\) + \(\frac{2017}{2018}\) = \(1.999008674\)
B = \(\frac{2016+2017}{2017+2018}\) = \(0.9995043371\)
Mà 1.999008674 > 0.9995043371
Nên: A > B
Giải như bạn Trần Nhật Quỳnh thà không làm còn hơn.
so sánh
P=2015/2016+2016/2017+2017/2018 và Q=2015+2016+2017/2016+2017+2018
Ta có:\(Q=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì \(\hept{\begin{cases}\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\\\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\\\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\end{cases}}\)
\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Rightarrow P>Q\)
Vậy P > Q
so sánh : (1+2016^2016)/(1+2017^2017) và (1+2017^2017)/(1+2018^2018)