Những câu hỏi liên quan
MD
Xem chi tiết
LD
14 tháng 8 2017 lúc 20:28

Vì \(\overline{abc}⋮10\)nên\(c=0\). Suy ra:\(\overline{ab0}=10\left(a^2+b^2\right)\Rightarrow\overline{ab}=a^2+b^2\Rightarrow10a+b=a^2+b^2\Rightarrow10a-a^2=b\left(b-1\right)\)

Vì b(b-1) chẵn, 10a chẵn nên a chẵn. Suy ra: a=2;4;6;8. Lần lượt thủ các trường hợp ta ko tìm được số nào thỏa mãn

Bình luận (0)
TB
14 tháng 8 2017 lúc 20:46

fedef

Bình luận (0)
TB
14 tháng 8 2017 lúc 20:48

10

10

10

Bình luận (0)
NC
Xem chi tiết
H24
Xem chi tiết
NM
26 tháng 11 2021 lúc 22:01

1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học

2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365

 

Bình luận (0)
BL
Xem chi tiết
BL
1 tháng 2 2020 lúc 23:16

Nguyễn Thành Trương, Vũ Minh Tuấn, Băng Băng 2k6, Trần Thanh Phương, Nguyễn Lê Phước Thịnh, tth,

Nguyễn Văn Đạt, Hồ Bảo Trâm, Lê Thị Thục Hiền, @Akai Haruma, @Nguyễn Việt Lâm

giúp e vs ạ! Cần gấp! Thanks!

Bình luận (0)
 Khách vãng lai đã xóa
DH
2 tháng 2 2020 lúc 9:48

Bài 1:

Đặt: \(\left\{{}\begin{matrix}A=\overline{abc}\\B=\overline{def}\end{matrix}\right.\left(100\le A;A,B\le999\right)\)

Khi đó ta có: \(999A=\left(A+B\right)\left(A+B-1\right)\)

Vì: \(A\le999\) nên:

\(\Rightarrow\left(A+B\right)\left(A+B-1\right)\le999^2\)

\(\Rightarrow A+B\le999\)

Xét các trường hợp \(A=999\)\(A< 999\) từ đó :

\(\Rightarrow\overline{abcdef}=494209\)

Vậy số cần tìm là: \(494209\)

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
DN
29 tháng 5 2017 lúc 22:19

ta thấy ab2=(a+b)3 nên ab là lập phương 1 số ,a+b là bình phương 1 số

ta có:a\(\supseteq\)9,b\(\supseteq\)9 nên a+b\(\supseteq\)18

nên a+b có thể là 4 ,9, 16

xét a+b=4 thì không có giá trị a,b nào phù hợp để ab là số lập phương

xét a+b=9 thid a,b có giá trị phù hợp là 2,7 thì được ab=27 (thỏa mãn)

xét a+b=16 thì cũng không có giá trị nào phù hợp

vậy a=2,b=7 thì thỏa mãn

Bình luận (0)
HT
1 tháng 9 2020 lúc 14:55

Vì \(\left(a+b\right)^3\) là SCP

=> Đặt \(a+b=x^2\)

=> \(\overline{ab}^2=x^6\)

<=> \(\overline{ab}=x^3\)

Vì \(10\le\overline{ab}\le99\) => \(x^2\in\left\{27;64\right\}\Rightarrow x\in\left\{3;4\right\}\)

Nếu x = 3 => \(\overline{ab}=27\)

<=> \(\overline{ab}^2=27^2=9^3=\left(2+7\right)^3\left(tm\right)\)

Nếu x = 4 => \(\overline{ab}=64\)

<=> \(\overline{ab}^2=64^2=16^3\ne\left(6+4\right)^3\) => loại

Vậy SCT là 27, xem bài mình nè, chiều đi học nhé:))

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
DA
Xem chi tiết
HH
Xem chi tiết
TC
9 tháng 3 2020 lúc 9:10

Ta có:

\(\overline{abc}:\left(a+b+c\right)=25\)

\(\Rightarrow\overline{abc}=25\left(a+b+c\right)\)

\(\Rightarrow\overline{abc}⋮25\Rightarrow\left[{}\begin{matrix}\overline{abc}=\overline{a00}\\\overline{abc}=\overline{a25}\\\overline{abc}=\overline{a50}\\\overline{abc}=\overline{a75}\end{matrix}\right.\)

TH1:\(\overline{abc}=\overline{a00}\)

\(\Rightarrow\overline{a00}=25.a\)

\(\Rightarrow100a=25.a\)

\(\Rightarrow a=0\), loại.

TH2:\(\overline{abc}=\overline{a25}\)

\(\Rightarrow\overline{a25}=25\left(a+b+c\right)=25\left(a+2+5\right)=25a+175\)

\(\Rightarrow100a+25=25a+175\)

\(\Rightarrow100a-25a=175-25\)

\(\Rightarrow75a=150\Rightarrow a=2\)

\(\Rightarrow a=b=2\), loại.

TH3:\(\overline{abc}=\overline{a50}\)

\(\Rightarrow\overline{a50}=25\left(a+5+0\right)=25\left(a+5\right)=25a+125\)

\(\Rightarrow100a+50=25a+125\)

\(\Rightarrow75a=75\Rightarrow a=1\left(TM\right)\)

TH4:\(\overline{abc}=\overline{a75}\)

\(\Rightarrow\overline{a75}=25\left(a+7+5\right)=25a+300\)

\(\Rightarrow100a+75=25a+300\)

\(\Rightarrow75a=225\Rightarrow a=3\left(TM\right)\)

Vậy \(\overline{abc}\in\left\{150;375\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
LS
Xem chi tiết
AH
30 tháng 8 2020 lúc 0:06

Bạn thử xem lại đề xem điều kiện số $1$ thì $abc=n^2-1$ hay $\overline{abc}=n^2-1$ ??

Bình luận (0)
LS
30 tháng 8 2020 lúc 20:26

\(\overline{abc}\) đấy

Bình luận (0)