Violympic toán 6

HH

Tìm các chữ số a, b,c khác nhau sao cho: \(\overline{abc}:\left(a+b+c\right)=25\)

TC
9 tháng 3 2020 lúc 9:10

Ta có:

\(\overline{abc}:\left(a+b+c\right)=25\)

\(\Rightarrow\overline{abc}=25\left(a+b+c\right)\)

\(\Rightarrow\overline{abc}⋮25\Rightarrow\left[{}\begin{matrix}\overline{abc}=\overline{a00}\\\overline{abc}=\overline{a25}\\\overline{abc}=\overline{a50}\\\overline{abc}=\overline{a75}\end{matrix}\right.\)

TH1:\(\overline{abc}=\overline{a00}\)

\(\Rightarrow\overline{a00}=25.a\)

\(\Rightarrow100a=25.a\)

\(\Rightarrow a=0\), loại.

TH2:\(\overline{abc}=\overline{a25}\)

\(\Rightarrow\overline{a25}=25\left(a+b+c\right)=25\left(a+2+5\right)=25a+175\)

\(\Rightarrow100a+25=25a+175\)

\(\Rightarrow100a-25a=175-25\)

\(\Rightarrow75a=150\Rightarrow a=2\)

\(\Rightarrow a=b=2\), loại.

TH3:\(\overline{abc}=\overline{a50}\)

\(\Rightarrow\overline{a50}=25\left(a+5+0\right)=25\left(a+5\right)=25a+125\)

\(\Rightarrow100a+50=25a+125\)

\(\Rightarrow75a=75\Rightarrow a=1\left(TM\right)\)

TH4:\(\overline{abc}=\overline{a75}\)

\(\Rightarrow\overline{a75}=25\left(a+7+5\right)=25a+300\)

\(\Rightarrow100a+75=25a+300\)

\(\Rightarrow75a=225\Rightarrow a=3\left(TM\right)\)

Vậy \(\overline{abc}\in\left\{150;375\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
AN
Xem chi tiết
GD
Xem chi tiết
TL
Xem chi tiết
BT
Xem chi tiết
HH
Xem chi tiết
DX
Xem chi tiết
MH
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết