\(\dfrac{x}{x-2}+\dfrac{x+2}{x}>2\)
Rút gọn
a)\(\dfrac{x}{x+1}+\dfrac{1}{x-1}-\dfrac{2x}{1-x^2}\)
b)\(\dfrac{x}{x-2}-\dfrac{4x}{x^2-4}-\dfrac{2}{x+2}\)
c)\(\dfrac{2x^2-3x-9}{x^2-9}-\dfrac{x}{x+3}-\dfrac{x+3}{3-x}\)
d)\(\dfrac{x+3}{x-2}+\dfrac{x+2}{1-x}-\dfrac{4x-x^2}{x^2-3x+2}\)
giúp mik vs
cảm ơn <3
a: \(=\dfrac{x^2-x+x+1+2x}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\)
b: \(=\dfrac{x^2+2x-4x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\)
c: \(=\dfrac{2x^2-3x-9-x^2+3x+x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x^2+6x}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x}{x-3}\)
Giải các phương trình
1, \(\dfrac{1}{x}-\dfrac{2}{x+1}=\dfrac{3}{x^2+x}\)
2, \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
3, \(\dfrac{x-2}{x+2}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\)
1. \(\dfrac{1}{x}-\dfrac{2}{x+1}=\dfrac{3}{x^2+x}\)
\(\Leftrightarrow\dfrac{x+1}{x^2+x}-\dfrac{2x}{x^2+x}=\dfrac{3}{x^2+x}\)
\(\Rightarrow x+1-2x=3\)
\(\Leftrightarrow1-x=3\)
\(\Leftrightarrow-x=2\\ \Leftrightarrow x=-2\)
Vậy phương trình có nghiệm duy nhất \(x=-2\)
2. \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow\dfrac{x^2+2x}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\)
\(\Rightarrow x^2+2x-x+2=2\)
\(\Leftrightarrow x^2+x+2=2\\ \Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0 \)
\(\Leftrightarrow x=0\) hoặc x + 1= 0
⇔ x = 0 hoặc x= -1
Vậy phương trình có tập nghiệm là S={0;-1}
1) ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
Ta có: \(\dfrac{1}{x}-\dfrac{2}{x+1}=\dfrac{3}{x^2+x}\)
\(\Leftrightarrow\dfrac{x+1}{x\left(x+1\right)}-\dfrac{2x}{x\left(x+1\right)}=\dfrac{3}{x\left(x+1\right)}\)
Suy ra: \(x+1-2x=3\)
\(\Leftrightarrow-x+1=3\)
\(\Leftrightarrow-x=2\)
hay x=-2(thỏa ĐK)
Vậy: S={-2}
Đề bài: Giải các phương trình
a) \(\dfrac{1}{x}\) - \(\dfrac{2}{x+1}\) = \(\dfrac{3}{x^2+x}\)
b) \(\dfrac{x+2}{x-2}\) - \(\dfrac{1}{x}\) = \(\dfrac{2}{x\left(x-2\right)}\)
c) \(\dfrac{x-2}{x+2}\) - \(\dfrac{3}{x-2}\) = \(\dfrac{2\left(x-11\right)}{x^2-4}\)
a) ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
Ta có: \(\dfrac{1}{x}-\dfrac{2}{x+1}=\dfrac{3}{x^2+x}\)
\(\Leftrightarrow\dfrac{x+1}{x\left(x+1\right)}-\dfrac{2x}{x\left(x+1\right)}=\dfrac{3}{x\left(x+1\right)}\)
Suy ra: \(-x+1=3\)
\(\Leftrightarrow-x=2\)
hay x=-2(thỏa ĐK)
Vậy: S={-2}
1) \(\dfrac{1}{x^2+6x+9}+\dfrac{1}{6x-x^2+9}+\dfrac{x}{x^2-9}\) 2) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\) 3) \(\dfrac{x-3}{x+1}-\dfrac{x+2}{x-1}+\dfrac{8x}{x^2-1}\)
Giải phương trình:
a/ \(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(x+3\right)}+\dfrac{2}{x+2}\)
b/ \(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\)
c/ \(\dfrac{x}{2x+2}-\dfrac{2x}{x^2-2x-3}=\dfrac{2}{6-2x}\)
d/ \(\dfrac{5}{-x^2+5x-6}+\dfrac{x+3}{2-x}=0\)
Mk giải giúp bạn phần a thôi nha! (Dài lắm, lười :v)
a, 1 + \(\dfrac{x}{3-x}\) = \(\dfrac{5x}{\left(x+2\right)\left(x+3\right)}+\dfrac{2}{x+2}\) (x \(\ne\) -2; x \(\ne\) \(\pm\) 3)
\(\Leftrightarrow\) \(\dfrac{3}{3-x}=\dfrac{5x+2\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}\)
\(\Leftrightarrow\) \(\dfrac{3}{3-x}=\dfrac{5x+2x+6}{\left(x+2\right)\left(x+3\right)}\)
\(\Leftrightarrow\) \(\dfrac{3}{3-x}=\dfrac{7x+6}{x^2+5x+6}\)
Vì 3 - x \(\ne\) 0; x2 + 5x + 6 \(\ne\) 0
\(\Rightarrow\) 3(x2 + 5x + 6) = (7x + 6)(3 - x)
\(\Leftrightarrow\) 3x2 + 15x + 18 = 21x - 7x2 + 18 - 6x
\(\Leftrightarrow\) 10x2 = 0
\(\Leftrightarrow\) x = 0 (TM)
Vậy S = {0}
Chúc bn học tốt! (Nếu bạn cần phần nào khác mk có thể giúp bn chứ đừng có đăng hết lên, ít người làm lắm :v)
b)\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\\ \Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\Leftrightarrow x^2+2x-2=x-2\\ \Leftrightarrow x^2+2x-2-x+2=0\Leftrightarrow x^2-x=0\\ \Leftrightarrow x\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
vậy..
d)\(\dfrac{5}{-x^2+5x-6}+\dfrac{x+3}{2-x}=0\\ \Leftrightarrow\dfrac{5}{\left(x-3\right)\left(2-x\right)}+\dfrac{\left(x+3\right)\left(x-3\right)}{\left(2-x\right)\left(x-3\right)}=0\\ \Leftrightarrow5+x^2-9=0\\ \Leftrightarrow x^2-4=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
vậy..
Thu gọn
a) \(\dfrac{1}{x-1}+\dfrac{2x}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\)
b) \(\dfrac{x+2}{x-3}=\dfrac{x^2+3x}{x^2-9}\)
c) \(\dfrac{x-2}{x+2}-\dfrac{x+2}{x-2}=\dfrac{-16}{x^2-4}\)
Đây là bài giải pt chứ có phải biểu thức đâu mà thu gọn hả bạn?
Lời giải:
a. ĐKXĐ: $x\neq 1$
PT $\Leftrightarrow \frac{x^2+x+1}{(x-1)(x^2+x+1)}+\frac{2x(x-1)}{(x-1)(x^2+x+1)}=\frac{3x^2}{(x-1)(x^2+x+1)}$
$\Leftrightarrow x^2+x+1+2x(x-1)=3x^2$
$\Leftrightarrow 3x^2-x+1=3x^2$
$\Leftrightarrow x=1$ (không thỏa đkxđ)
Vậy pt vô nghiệm.
b. ĐKXĐ: $x\neq \pm 3$
PT $\Leftrightarrow \frac{(x+2)(x+3)}{(x-3)(x+3)}=\frac{x^2+3x}{(x-3)(x+3)}$
$\Leftrightarrow (x+2)(x+3)=x^2+3x$
$\Leftrightarrow x^2+5x+6=x^2+3x$
$\Leftrightarrow 2x+6=0$
$\Leftrightarrow x=-3$ (không thỏa mãn đkxđ)
Do đó pt vô nghiệm.
c. ĐKXĐ: $x\neq \pm 2$
PT $\Leftrightarrow \frac{(x-2)^2-(x+2)^2}{(x+2)(x-2)}=\frac{-16}{(x-2)(x+2)}$
$\Leftrightarrow (x-2)^2-(x+2)^2=-16$
$\Leftrightarrow -8x=-16$
$\Leftrightarrow x=2$ (vi phạm đkxđ)
Do đó pt vô nghiệm.
m)(\(\dfrac{2x}{x^2-1}\)+\(\dfrac{x-1}{2x+2}\)):\(\dfrac{x+1}{2x}\)+\(\dfrac{3}{1-x}\)
p)(\(\dfrac{2+x}{2-x}\)+\(\dfrac{4x^2}{x^2-4}\)-\(\dfrac{2-x}{2+x}\)):\(\dfrac{x^2-3x}{2x^2-x^3}\)
m: \(=\left(\dfrac{2x}{\left(x-1\right)\left(x+1\right)}+\dfrac{x-1}{2\left(x+1\right)}\right)\cdot\dfrac{2x}{x+1}-\dfrac{3}{x-1}\)
\(=\dfrac{4x+x^2-2x+1}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{2x}{x+1}-\dfrac{3}{x-1}\)
\(=\dfrac{\left(x+1\right)^2\cdot x}{\left(x-1\right)\left(x+1\right)^2}-\dfrac{3}{x-1}=\dfrac{x}{x-1}-\dfrac{3}{x-1}=\dfrac{x-3}{x-1}\)
p: \(=\left(\dfrac{-\left(x+2\right)}{x-2}+\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right)\cdot\dfrac{-x^2\left(x-2\right)}{x\left(x-3\right)}\)
\(=\dfrac{-x^2-4x-4+4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)
\(=\dfrac{4x^2-8x}{\left(x+2\right)}\cdot\dfrac{-x}{x-3}=\dfrac{-4x^2\left(x-2\right)}{\left(x+2\right)\left(x-3\right)}\)
Rút gọn:
a) A= \(\dfrac{x}{x-y}+\dfrac{2y^2}{x^2-y^2}-\dfrac{x}{x+y}\)
b) B= \(\dfrac{x}{x-2}-\dfrac{4x}{x^2-4}-\dfrac{2}{x+2}\)
c) C= \(\dfrac{5}{x+1}-\dfrac{10}{-x^2+x-1}-\dfrac{15}{x^3+1}\)
a) \(\dfrac{x}{x-y}+\dfrac{2y^2}{x^2-y^2}-\dfrac{x}{x+y}=\dfrac{x\left(x+y\right)+2y^2-x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{x^2+xy+2y^2-x^2+xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{2y^2+2xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{2y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{2y}{x-y}\)
b) \(B=\dfrac{x}{x-2}-\dfrac{4x}{x^2-4}-\dfrac{2}{x+2}=\dfrac{x\left(x+2\right)-4x-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+2x-4x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\)
c) \(\dfrac{5}{x+1}-\dfrac{10}{-x^2+x-1}-\dfrac{15}{x^3+1}=\dfrac{5}{x+1}+\dfrac{10}{x^2-x+1}-\dfrac{15}{x^3+1}=\dfrac{5\left(x^2-x+1\right)+10\left(x+1\right)-15}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x^2-5x+5+10x+10-15}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x^2+5x}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x}{x^2-x+1}\)
Bài 1:
i)\(\dfrac{x+1}{x-5}\)+\(\dfrac{x-18}{x-5}\)-\(\dfrac{x+2}{5-x}\)
j)\(\dfrac{3x\left(x-2\right)}{3x-2}\)+\(\dfrac{6x^2}{3x-2}\)-\(\dfrac{2\left(2-3x\right)}{2-3x}\)
n)\(\dfrac{2}{x}\)+\(\dfrac{3}{x-1}\)+\(\dfrac{1-4x}{x^2-x}\)
Bài 2:
j)\(\dfrac{2}{3x}\)-\(\dfrac{1}{2x-2}\)-\(\dfrac{x-4}{6x-6x^2}\)
i: \(=\dfrac{x+1+x-18+x+2}{x-5}=\dfrac{3x-15}{x-5}=3\)
Bài 1:
\(i,\dfrac{x+1}{x-5}+\dfrac{x-18}{x-5}-\dfrac{x+2}{5-x}=\dfrac{x+1}{x-5}+\dfrac{x-18}{x-5}+\dfrac{x+2}{x-5}=\dfrac{x+1+x-18+x+2}{x-5}=\dfrac{3x-15}{x-5}=\dfrac{3\left(x-5\right)}{x-5}=3\)
\(j,\dfrac{3x\left(x-2\right)}{3x-2}+\dfrac{6x^2}{3x-2}-\dfrac{2\left(2-3x\right)}{2-3x}=\dfrac{3x^2-6x}{3x-2}+\dfrac{6x^2}{3x-2}+\dfrac{4-6x}{3x-2}=\dfrac{3x^2-6x+6x^2+4-6x}{3x-2}=\dfrac{9x^2-12x+4}{3x-2}=\dfrac{\left(3x-2\right)^2}{3x-2}=3x-2\)
\(n,\dfrac{2}{x}+\dfrac{3}{x-1}+\dfrac{1-4x}{x^2-x}=\dfrac{2\left(x-1\right)+3x+1-4x}{x\left(x-1\right)}=\dfrac{2x-2+3x+1-4x}{x\left(x-1\right)}=\dfrac{x-1}{x\left(x-1\right)}=\dfrac{1}{x}\)
Bài 2:
\(j,\dfrac{2}{3x}-\dfrac{1}{2x-2}-\dfrac{x-4}{6x-6x^2}=\dfrac{4\left(x-1\right)}{6x\left(x-1\right)}-\dfrac{3x}{6x\left(x-1\right)}-\dfrac{x-4}{6x\left(1-x\right)}=\dfrac{4x-4-3x+x-4}{6x\left(x-1\right)}=\dfrac{2x-8}{6x\left(x-1\right)}=\dfrac{2\left(x-4\right)}{6x\left(x-1\right)}=\dfrac{x-4}{3x\left(x-1\right)}\)
Rút gọn
a) \((\dfrac{2x^2+3x}{x^3+1}+\dfrac{1}{x^2-x+1}).\dfrac{x^2-x+1}{x}\)
b) \(\left(\dfrac{1}{x-1}-\dfrac{1}{x}\right):\left(\dfrac{x+1}{x-2}-\dfrac{x+2}{x-1}\right)\)
c) \(\left(\dfrac{1}{x}+\dfrac{x}{x+1}\right).\dfrac{x^2+x}{x}\)
Lời giải:
a. ĐKXĐ: $x\neq 0;-1$
\(=\left(\frac{2x^2+3x}{(x+1)(x^2-x+1)}+\frac{x+1}{(x+1)(x^2-x+1)}\right).\frac{x^2-x+1}{x}\)
\(=\frac{2x^2+3x+x+1}{(x+1)(x^2-x+1)}.\frac{x^2-x+1}{x}=\frac{2x^2+4x+1}{x(x+1)}\)
b. ĐKXĐ: $x\neq 0; 1;2$
\(=\frac{x-(x-1)}{x(x-1)}:\frac{(x+1)(x-1)-(x-2)(x+2)}{(x-2)(x-1)}=\frac{1}{x(x-1)}:\frac{3}{(x-2)(x-1)}\)
\(=\frac{1}{x(x-1)}.\frac{(x-2)(x-1)}{3}=\frac{x-2}{3x}\)
c. ĐKXĐ: $x\neq 0; -1$
\(=\frac{x+1+x^2}{x(x+1)}.\frac{x(x+1)}{x}=\frac{x^2+x+1}{x}\)