\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+....+\dfrac{1}{22.25}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính giá trị biểu thức:
B= \(1-\dfrac{3}{1.4}-\dfrac{3}{4.7}-\dfrac{3}{7.10}-...-\dfrac{3}{2020.2023}\)
\(B=1-\dfrac{3}{1\cdot4}-\dfrac{3}{4\cdot7}-...-\dfrac{3}{2020\cdot2023}\\ =1-\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{2020\cdot2023}\right)\\ =1-\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2020}-\dfrac{1}{2023}\right)\\ =1-\left(1-\dfrac{1}{2023}\right)\\ =1-\dfrac{2022}{2023}=\dfrac{1}{2023}\)
`B=1-3/(1.4)-3/(4.7)-3/(7.10)-....-3/(2020.2023)`
`B=1-(3/(1.4)+3/(4.7)+.....+3/(2020.2023))`
`B=1-(1-1/4+1/4-1/7+.....+1/2020-1/2023)`
`B=1-(1-1/2023)`
`B=1-1+1/2023=1/2023`
cho S= \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{40.43}+\dfrac{3}{43.46}\)
Hãy chứng tỏ rằng S<1
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{40.43}+\dfrac{3}{43.46}\\ S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{40}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}\\ S=1-\dfrac{1}{46}< 1\)
Vậy S < 1 (đpcm)
a) \(\dfrac{3}{1.4}\) +\(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.10}\) + ... + \(\dfrac{3}{121.124}\)
b) \(\dfrac{3}{2.3}\) + \(\dfrac{3}{3.4}\) + ... + \(\dfrac{3}{100.101}\)
c) \(\dfrac{1}{1.5}\) + \(\dfrac{1}{5.9}\) + \(\dfrac{1}{9.13}\) + ... + \(\dfrac{1}{401.405}\)
d) \(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + ... + \(\dfrac{2}{99.101}\)
a: \(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{121}-\dfrac{1}{124}=1-\dfrac{1}{124}=\dfrac{123}{124}\)
b: \(=3\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)=3\cdot\dfrac{99}{202}=\dfrac{297}{202}\)
c: \(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-...+\dfrac{1}{401}-\dfrac{1}{405}\right)=\dfrac{1}{4}\cdot\dfrac{404}{405}=\dfrac{101}{405}\)
d: \(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)
e) \(\dfrac{3}{1.4}\)+\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{40.43}\)
\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{40.43}\\ =1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{40}-\dfrac{1}{43}\\ =1-\dfrac{1}{43}\\ =\dfrac{42}{43}\)
e) 3/1.4 + 3/4.7 + 3/7.10+ ... + 3/40.43
= 1-1/4 + 1/4 -1/7 + 1/7-1/10+...+1/40-1/43
= 1-1/43
= 42/43
M = \(\dfrac{-3}{1.4}-\dfrac{3}{4.7}-\dfrac{3}{7.10}-...-\dfrac{3}{61.64}\)
\(=-\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{61}-\dfrac{1}{64}\right)=-\dfrac{1}{63}\)
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{x.\left(x+3\right)}=\dfrac{34}{103}\)
Tìm x
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{34}{103}\)
\(\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{34}{103}\)
\(\dfrac{1}{3}.\left(1-\dfrac{1}{x+3}\right)=\dfrac{34}{103}\)
\(1-\dfrac{1}{x+3}=\dfrac{34}{103}:\dfrac{1}{3}=\dfrac{34}{103}.3\)
\(1-\dfrac{1}{x+3}=\dfrac{102}{103}\)
\(\dfrac{1}{x+3}=1-\dfrac{102}{103}=\dfrac{103}{103}-\dfrac{102}{103}\)
\(\dfrac{1}{x+3}=\dfrac{1}{103}\)
\(\Rightarrow x+3=103\)
\(x=103-3\)
\(x=100\)
Vậy x = 100
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+.......+\dfrac{1}{x\left(x+3\right)}=\dfrac{125}{376}\)(x ϵ N*)
Tìm x :
\(\Leftrightarrow\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{375}{376}\)
\(\Leftrightarrow1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{375}{376}\)
\(\Leftrightarrow1-\dfrac{1}{x+3}=\dfrac{375}{376}\)
\(\Leftrightarrow\dfrac{1}{x+3}=1-\dfrac{375}{376}=\dfrac{1}{376}\)
\(\Rightarrow x+3=376\)
\(\Rightarrow x=373\)
Chứng minh rằng: \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{97.100}< \dfrac{1}{3}\)
\(l=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+....+\dfrac{1}{97.100}\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{100}\right)=\dfrac{1}{3}-\dfrac{1}{300}< \dfrac{1}{3}\left(đpcm\right)\)
\(\dfrac{-3}{1.4}-\dfrac{3}{4.7}-\dfrac{3}{7.10}-...-\dfrac{3}{2017.2020}\)
A = \(-\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2017}-\dfrac{1}{2020}\right)=-1+\dfrac{1}{2020}=\dfrac{-2019}{2020}\)