Tìm x \(\in\) Z biết :
5 \(\le\) \(\left|2x-1\right|\) = 8
tìm x biết \(\dfrac{-1}{8}< \dfrac{x}{72}\le\dfrac{-1}{36}\left(vớix\in z\right)\)
\(-\dfrac{1}{8}< \dfrac{x}{72}\le-\dfrac{1}{36}\)
\(\Rightarrow\dfrac{-9}{72}< \dfrac{x}{72}\le-\dfrac{2}{72}\)
\(\Rightarrow x\in\left\{-8;-7;-6;-5;-4;-3;-2\right\}\)
`(-1)/8 < x/72 <= (-1)/36`
`(-1xx9)/(8xx9) < x/72 <= (-1xx2)/(36xx2)`
`(-9)/72 < x/72 <= (-2)/72`
`-> -9< x <= (-2)`
`-> x=-8;-7;-6;-5;-4;-3;-2`
`@ yngoc`
cho tập \(Â=\left\{x\in R|2x-1< 5\right\},B=\left\{x\in Z|-1\le x\le5\right\}\)
và C là tập giá trị hàm: y=x^2-2x+m trên \([-1;1)\)
a, tìm \(A\cap B\)
b, tìm m để \(C\subset A\)
\(a,\)\(A=\left\{x\in R|x< 3\right\}\Rightarrow A=\left(\text{ -∞;3}\right)\)
\(B=\left\{-1;0;1;2;3;4;5\right\}\)
\(\Rightarrow A\cap B=\left\{-1;0;1;2\right\}\)
\(b,x=-1\Rightarrow y=1-2\left(-1\right)+m=m+3\)
\(x=1\Rightarrow y=1-2+m=m-1\)
\(\Rightarrow C=(m-1;m+3]\subset A\)
\(\Rightarrow C\subset A\Leftrightarrow m+3< 3\Leftrightarrow m< 0\)
Tìm max
\(A=3\sqrt{2x-1}+x\sqrt{5-4x^2}\left(\frac{1}{2}\le x\le\frac{\sqrt{5}}{2}\right)\)
\(B=\frac{xyz\left(x+y+z+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}\left(x,y,z>0\right)\)
A
Áp dụng BĐT cosi ta có
\(\sqrt{\left(2x-1\right).1}\le\frac{2x-1+1}{2}=x\)
\(x\sqrt{5-4x^2}\le\frac{x^2+5-4x^2}{2}=\frac{-3x^2+5}{2}\)
Khi đó
\(A\le3x+\frac{-3x^2+5}{2}=\frac{-3x^2+6x+5}{2}=\frac{-3\left(x-1\right)^2}{2}+4\le4\)
MaxA=4 khi \(\hept{\begin{cases}2x-1=1\\x^2=5-4x^2\\x=1\end{cases}\Rightarrow}x=1\)
B
Áp dụng BĐT cosi ta có :
\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)
=> \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)
=> \(B\le\frac{xyz.\left(\sqrt{3\left(x^2+y^2+z^2\right)}+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+xz\right)}=\frac{xyz.\left(\sqrt{3}+1\right)}{\left(xy+yz+xz\right)\sqrt{x^2+y^2+z^2}}\)
Lại có \(x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\); \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\)
=> \(\sqrt{x^2+y^2+z^2}\left(xy+yz+xz\right)\ge3\sqrt[3]{x^2y^2z^2}.\sqrt{3\sqrt[3]{x^2y^2z^2}}=3\sqrt{3}.xyz\)
=> \(B\le\frac{\sqrt{3}+1}{3\sqrt{3}}=\frac{3+\sqrt{3}}{9}\)
\(MaxB=\frac{3+\sqrt{3}}{9}\)khi x=y=z
Tìm x ϵ Z biết:
a) | 2x – 5 | = 13
b) \(\left|7x+3\right|\) = 66
c) | 5x – 2| \(\le\) 0
a) I 2x-5 I = 13
=> 2x-5 =13 => x=9
hoặc 2x-5= -13 => x=\(\dfrac{-8}{2}\)
a) | 2x-5 | = 13
=>2x-5 = 13 hoặc 2x-5 = -13
+)2x-5 = 13
=>2x = 13+5 =18
+)2x-5 =-13
=>2x=-13+5 = -8
=>x=-4
Vậy x thuộc {9;-4}
Vậy x=9
b)|7x+3|=66
=>7x+3 = 66 hoặc 7x+3 = -66
+)7x+3=66
=>7x=66-3=63
=>x=9
+)7x+3=-66
=>7x=-66-3=-69
=>x=-69/7 (loại vì x thuộc Z )
Vậy x=9
c) Có | 5x-2|\(\le\)0
mà |5x-2|\(\ge\)0
=>|5x-2|=0
=>5x-2=0
=>5x=2
=>x=2/5 ( loại vì x thuộc Z)
Vậy x=\(\varnothing\)
Giải:
a) \(\left|2x-5\right|=13\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=13\\2x-5=-13\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=9\left(t\backslash m\right)\\x=-4\left(t\backslash m\right)\end{matrix}\right.\)
b) \(\left|7x+3\right|=66\)
\(\Rightarrow\left[{}\begin{matrix}7x+3=66\\7x+3=-66\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=9\\x=\dfrac{-69}{7}\end{matrix}\right.\)
Vì \(x\in Z\) nên x=9
c) \(\left|5x-2\right|\le0\)
mà \(\left|5x-2\right|\ge0\)
\(\Rightarrow\left|5x-2\right|=0\)
\(5x-2=0\)
\(5x=0+2\)
\(5x=2\)
\(x=2:5\)
\(x=\dfrac{2}{5}\) (loại)
Vậy \(x\in\) ∅
e)\(\frac{22}{15}-x=\frac{-8}{27}\)
g)\(\left(\frac{2x}{5}-1\right):\left(-5\right)=\frac{1}{4}\)
h)\(-2\frac{1}{4}x+9\frac{1}{4}=20\)
i)\(-4\frac{3}{5}\cdot2\frac{4}{23}\le x\le-2\frac{3}{5}:1\frac{6}{15}\left(x\in z\right)\)
\(e,\frac{22}{15}-x=-\frac{8}{27}\)
=> \(x=\frac{22}{15}-\left[-\frac{8}{27}\right]\)
=> \(x=\frac{22}{15}+\frac{8}{27}\)
=> \(x=\frac{198}{135}+\frac{40}{135}=\frac{198+40}{135}=\frac{238}{135}\)
\(g,\left[\frac{2x}{5}-1\right]:\left[-5\right]=\frac{1}{4}\)
=> \(\left[\frac{2x}{5}-\frac{1}{1}\right]=\frac{1}{4}\cdot\left[-5\right]\)
=> \(\left[\frac{2x}{5}-\frac{5}{5}\right]=-\frac{5}{4}\)
=> \(\frac{2x-5}{5}=-\frac{5}{4}\)
=> \(2x-5=-\frac{5}{4}\cdot5=-\frac{25}{4}\)
=> \(2x=-\frac{5}{4}\)
=> \(x=-\frac{5}{8}\)
\(h,-2\frac{1}{4}x+9\frac{1}{4}=20\)
=> \(-\frac{9}{4}x+\frac{37}{4}=20\)
=> \(-\frac{9}{4}x=20-\frac{37}{4}=\frac{43}{4}\)
=> \(x=\frac{43}{4}:\left[-\frac{9}{4}\right]=\frac{43}{4}\cdot\left[-\frac{4}{9}\right]=\frac{43}{1}\cdot\left[-\frac{1}{9}\right]=-\frac{43}{9}\)
\(i,-4\frac{3}{5}\cdot2\frac{4}{23}\le x\le-2\frac{3}{5}:1\frac{6}{15}\)
=> \(-\frac{23}{5}\cdot\frac{50}{23}\le x\le-\frac{13}{5}:\frac{21}{15}\)
=> \(-\frac{1}{1}\cdot\frac{10}{1}\le x\le-\frac{13}{5}\cdot\frac{15}{21}\)
=> \(-10\le x\le-\frac{13}{1}\cdot\frac{3}{21}\)
=> \(-10\le x\le-\frac{13}{1}\cdot\frac{1}{7}\)
=> \(-10\le x\le-\frac{13}{7}\)
Đến đây tìm x
Tìm x \(\in\) Z
\(\frac{1}{-2}+\frac{1}{+}+\frac{-6}{9}\le x\le\left(\frac{1}{4}+\frac{-5}{13}\right)+\left(\frac{3}{6}+\frac{8}{-13}+\frac{9}{12}\right)\)
Tìm x \(\in\)Z biết :
\(7\frac{1}{3}\left(\frac{1}{6}-\frac{1}{2}\right)\le x\le\frac{3}{4}\left(\frac{1}{6}-\frac{1}{5}-\frac{1}{15}\right)\)
Tìm m để \(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+m\) dùng \(\forall x\in\left(-5;3\right)\)
ĐK: \(-5\le x\le3\)
\(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+m\)
\(\Leftrightarrow-x^2-2x+15+\sqrt{-x^2-2x+15}-15\le m\)
Đặt \(\sqrt{-x^2-2x+15}=t\left(0\le t\le4\right)\)
Bất phương trình đã cho tương đương:
\(\Leftrightarrow f\left(t\right)=t^2+t-15\le m\)
Yêu cầu bài toán thỏa mãn khi \(m\ge maxf\left(t\right)=f\left(4\right)=5\)
Vậy \(m\ge5\)
Cho tập \(A=\left(-\infty,-1\right)\cup\left(2,+\infty\right)\\ B=\left[-3.1\right]\)
Tìm m để \(C\dfrac{A}{B}\subset C\) biết \(C=\left\{x\in R\left|\left|2x-1\right|\le m\right|\right\}\)