TD

Tìm x ϵ Z biết:

            a) | 2x – 5 | = 13

            b) \(\left|7x+3\right|\) = 66

            c) | 5x – 2| \(\le\) 0

TT
3 tháng 6 2021 lúc 15:17

a) I 2x-5 I = 13

=> 2x-5 =13 => x=9 

hoặc 2x-5= -13 => x=\(\dfrac{-8}{2}\)

Bình luận (0)

a) | 2x-5 | = 13

=>2x-5 = 13   hoặc   2x-5 = -13

+)2x-5 = 13

=>2x = 13+5 =18

+)2x-5 =-13

=>2x=-13+5 = -8

=>x=-4

Vậy x thuộc {9;-4}

Vậy x=9

b)|7x+3|=66

=>7x+3 = 66     hoặc   7x+3 = -66

+)7x+3=66

=>7x=66-3=63

=>x=9

+)7x+3=-66

=>7x=-66-3=-69

=>x=-69/7  (loại vì x thuộc Z )

Vậy x=9

c) Có | 5x-2|\(\le\)0

mà |5x-2|\(\ge\)0

=>|5x-2|=0

=>5x-2=0

=>5x=2

=>x=2/5   ( loại vì x thuộc Z)

Vậy x=\(\varnothing\)

Bình luận (0)

Giải:

a) \(\left|2x-5\right|=13\) 

\(\Rightarrow\left[{}\begin{matrix}2x-5=13\\2x-5=-13\end{matrix}\right.\) 

\(\Rightarrow\left[{}\begin{matrix}x=9\left(t\backslash m\right)\\x=-4\left(t\backslash m\right)\end{matrix}\right.\) 

b) \(\left|7x+3\right|=66\) 

\(\Rightarrow\left[{}\begin{matrix}7x+3=66\\7x+3=-66\end{matrix}\right.\) 

\(\Rightarrow\left[{}\begin{matrix}x=9\\x=\dfrac{-69}{7}\end{matrix}\right.\) 

Vì \(x\in Z\) nên x=9

c) \(\left|5x-2\right|\le0\) 

mà \(\left|5x-2\right|\ge0\) 

\(\Rightarrow\left|5x-2\right|=0\) 

       \(5x-2=0\) 

             \(5x=0+2\) 

             \(5x=2\) 

               \(x=2:5\) 

               \(x=\dfrac{2}{5}\) (loại)

Vậy \(x\in\) ∅

Bình luận (0)

Các câu hỏi tương tự
TV
Xem chi tiết
N6
Xem chi tiết
TM
Xem chi tiết
HC
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
NM
Xem chi tiết
NM
Xem chi tiết