C/m rằng; 1/3 + 1/30 + 1/32 + 1/35 + 1/45 + 1/47 + 1/50 < 1/2
Cho tam giác nhọn ABC có AD và BE là 2 dg cao cắt nhau tại H
a) Cho bt góc ABC > góc ACB. C/m rằng HC > HB
b) Vẽ HF vg góc vs AB tại F. C/m rằng 3 điểm C, H, F thẳng hàng
c) C/m rằng AB + AC > 2AD
d) C/m rằng HA + HB + HC < 2/3 (AB+AC+BC)
a: Vì góc ABC>góc ACB
nên AC>AB
=>HC>HB
b: Xét ΔABC có
BE là đường cao
AD là đường cao
BE cắt AD tại H
Do đó: H là trực tâm
=>C,H,F thẳng hàng
c: Gọi Mlà trung điểm của BC và lấy N sao cho M là trug điểm của AN
Xét tứgiác ABNC có
M là trung điểm của BC
M là trung điểm của AN
Do đó: ABNC là hình bình hành
Suy ra: AC=BN
Xét ΔACN có AC+CN>AN
=>AC+AB>2AM
=>AC+AB>2AD
Cho a, b, c, m ∈ Z. Chứng minh rằng nếu a ⋮ m, b ⋮ m và a + b + c ⋮ m thì c ⋮ m
`a vdots m,b vdots m`
`=>a+b vdots m`
Mà `a+b+c vdots m`
`=>a+b+c-(a+b) vdots m`
`=>a+b+c-a-b vdots m`
`=>(a-a)+(b-b)+c vdots m`
`=>0+0+c vdots m`
`=>c vdots m(forall a,b,c in Z)`
Bài 4: Chứng minh rằng: -(a-b-c)+(-a+b-c)-(-a+b+c)=-(a-b+c)
Bài 5: Cho M=(-a+b)-(b+c-a)+(c-a) Chứng minh rằng: Nếu a<0 thì M>0
Mình cần gấp ạ!
\(4,VT=-a+b+c-a+b-c+a-b-c=-a+b-c=-\left(a-b+c\right)=VP\\ 5,M=-a+b-b-c+a+c-a=-a\\ M>0\Rightarrow-a>0\Rightarrow a< 0\)
Cho tam giác ABC, có AC<AB, M là trung điểm BC, vẽ phân giác AD.Từ M vẽ đường thẳng vuông góc vs AD tại H, đường thẳng này cắt tia AC tại F, cắt AB tại E. C/m rằng:
a)Tam giác AFE cân.
b)Vẽ đường thẳng Bx//EF, cắt AC tại K. C/m rằng: KF=BE
c)C/m rằng: AE= AB+AC/2
Câu 3:
Cho △ABC có CA = CB = 10 cm, AB = 12 cm. Kẻ CI ⊥ AB (I ∈ AB)
Kẻ IH ⊥ AC (H ∈ AC), IK ⊥ BC (K ∈ BC)
a) C/m rằng IA = IB
b) C/m rằng IH = IK
c) Tính độ dài AC
d) C/m HK // AB
a: Ta có: ΔCAB cân tại C
mà CI là đường cao
nên I là trung điểm của AB
hay IA=IB
b: Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó: ΔCHI=ΔCKI
Suy ra: IH=IK
c: AB=12cm nên AI=6cm
=>CI=8cm
d: Xét ΔCAB có CH/CA=CK/CB
nên HK//AB
Chứng tỏ rằng nếu 2 số a và b chia cho số C mà có cùng số dư thì chứng tỏ rằng ( a- b) : c
Giúp mình với
Mình đag cần gấp
Gọi số dư khi chia a và b cho c là m.
Theo đề bài ta có:
a : c = d (dư m) => a = d.c + m
b : c = e (dư m) => b = e.c + m
=> a - b = (d.c + m) - (e.c + m)
= d.c + m - e.c - m
= (d.c - e.c) + (m - m)
= c. (d.e) chia hết cho c
Vậy a - b chia hết cho c (đpcm)
Chứng tỏ rằng nếu 2 số a và b chia cho số C mà có cùng số dư thì chứng tỏ rằng ( a- b) : c
Giúp mình với
Đặt a : c = d dư r
b : c = e dư r
===> ec+r = b ; dc+r = a
====> a-b = dc+r - ec - r = dc - ec = c(d-e) chia hết cho c
Chứng tỏ rằng nếu 2 số a và b chia cho số C mà có cùng số dư thì chứng tỏ rằng ( a- b) : c
Giúp mình với
Cho a và b khi chia cho c đều có số dư là r\(\left(r\in N\right)\)
\(\Rightarrow a=mc+r;b=nc+r\left(m,n\in N\right)\\ \left(a-b\right)=\left(mc+r-nc-r\right)=\left(mc+nc\right)=c\left(m+n\right)⋮c\)
Vậy ...
cho Δ ABC vuông tại A.M,N,P lần lược là trung đ của AB,AC,BC.
a) c/m rằng tứ giác BMNP là hình bình hanh
b) c/m rằng tứ giác AMPN là hình chữ nhật
c) vẽ Q đối xứng vs P qua N,R đối xứng vs P qua M.c/m rằng R,A,Q thẳng hàng
b1
Cho n là số tự nhiên c/m rằng n(n+1)(n+5) chia hết cho 3
b2
c/m rằng 11^n+2+12 ^2n+1 chia hết cho 133
b3
với q,p là số nguyên tố lớn hơn 5 c/m rằng p^4-q^4 chia hết cho 240
b1
Các số tự nhiên chia hết cho 3 có số dư là n;n+1;n+2
Nếu \(n⋮3\Leftrightarrow n\left(n+1\right)\left(n+5\right)⋮3\)
Nếu \(n+1⋮3\Leftrightarrow n\left(n+1\right)\left(n+5\right)⋮3\)
Nếu \(n+2⋮3\Leftrightarrow n\left(n+1\right)\left(n+5\right)=n\left(n+1\right)\left(n+2+3\right)\)
Mà \(3⋮3\)\(\Rightarrow n+2+3⋮3\) \(\Rightarrow n\left(n+1\right)\left(n+2+3\right)⋮3\)
Hay \(n\left(n+1\right)\left(n+5\right)⋮3\)
Vậy \(n\left(n+1\right)\left(n+5\right)⋮3\forall n\in N\)