tìm x:
1/2:2x+2x:22=9.5x
Tìm x
9.5x-2+7.5x-1-5x=2375
Ta có: \(9\cdot5^{x-2}+7\cdot5^{x-1}-5^x=2375\)
\(\Leftrightarrow5^x\cdot\dfrac{9}{25}+5^x\cdot\dfrac{7}{5}-5^x\cdot1=2375\)
\(\Leftrightarrow5^x\cdot\dfrac{19}{25}=2375\)
\(\Leftrightarrow5^x=2375:\dfrac{19}{25}=2375\cdot\dfrac{25}{19}=3125\)
\(\Leftrightarrow5^x=5^5\)
hay x=5
Vậy: x=5
tìm x, biết:
(2x+3)^2-(2x+1)(2x-1)=22
Ta có : (2x + 3)2 - (2x + 1)(2x - 1) = 22
=> 4x2 + 12x + 9 - 4x2 + 1 = 22
=> 12x + 10 = 22
=> 12x = 12
=> x = 1
Vậy x = 1
\(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)
\(\Leftrightarrow\left(2x+3\right)^2-\left(4x^2-1\right)=22\)
\(\Leftrightarrow\left(2x+3\right)^2-4x^2+1=22\)
\(\Leftrightarrow\left(2x+3-2x\right)\left(2x+3+2x\right)=21\)
\(\Leftrightarrow3.\left(4x+3\right)=21\)
\(\Leftrightarrow4x+3=7\)
\(\Leftrightarrow4x=4\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
( 2x + 3 )2 - ( 2x + 1 )( 2x - 1 ) = 22
<=> 4x2 + 12x + 9 - [ ( 2x )2 - 1 ] = 22
<=> 4x2 + 12x + 9 - 4x2 + 1 = 22
<=> 12x + 10 = 22
<=> 12x = 12
<=> x = 1
bài 7 tìm x
3,(x+1)=(x+1) 4,x(2x-3)-2(3-2x)=0
6,
3: =>x(x+1)=0
=>x=0 hoặc x=-1
4: =>(2x-3)(x+2)=0
=>x=3/2 hoặc x=-2
6: =>6x=7 hoặc 6x=-7
=>x=7/6 hoặc x==7/6
\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\)
\(\dfrac{x+1}{22}=\dfrac{6}{x}\)
\(\dfrac{2x-1}{2}=\dfrac{5}{x}\)
\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\)
\(\dfrac{2x+1}{9}=\dfrac{5}{x+1}\)
Tìm x
`@` `\text {Ans}`
`\downarrow`
\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\)
`=> (x-3)5 = (2x+1)3`
`=> 5x-15 = 6x+3`
`=> 5x-6x = 15+3`
`=> -x=18`
`=> x=-18`
\(\dfrac{x+1}{22}=\dfrac{6}{x}\)
`=> (x+1)x = 22*6`
`=> (x+1)x = 132`
`=> x^2 + x = 132`
`=> x^2+x-132=0`
`=> (x-11)(x+12)=0`
`=>`\(\left[{}\begin{matrix}x-11=0\\x+12=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=11\\x=-12\end{matrix}\right.\)
\(\dfrac{2x-1}{2}=\dfrac{5}{x}\)
`=> (2x-1)x = 2*5`
`=> 2x^2 - x =10`
`=> 2x^2 - x - 10 =0`
`=> 2x^2 + 4x - 5x - 10 =0`
`=> (2x^2 + 4x) - (5x+10)=0`
`=> 2x(x+2) - 5(x+2)=0`
`=> (2x-5)(x+2)=0`
`=>`\(\left[{}\begin{matrix}2x-5=0\\x+2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=5\\x=-2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\end{matrix}\right.\)
\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\)
`=> (2x-1)(2x+1)=21*3`
`=> 4x^2 + 2x - 2x - 1 = 63`
`=> 4x^2 - 1=63`
`=> 4x^2 - 1 - 63=0`
`=> 4x^2 - 64 = 0`
`=> 4(x^2 - 16)=0`
`=> 4(x^2 + 4x - 4x - 16)=0`
`=> 4[(x^2+4x)-(4x+16)]=0`
`=> 4[x(x+4)-4(x+4)]=0`
`=> 4(x-4)(x+4)=0`
`=>`\(\left[{}\begin{matrix}x-4=0\\x+4=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
\(\dfrac{2x+1}{9}=\dfrac{5}{x+1}\)
`=> (2x+1)(x+1) = 9*5`
`=> (2x+1)(x+1)=45`
`=> 2x^2 + 2x + x + 1 = 45`
`=> 2x^2 + 3x + 1 =45`
`=> 2x^2 + 3x + 1 - 45 =0`
`=> 2x^2+3x-44=0`
`=> 2x^2 + 11x - 8x - 44=0`
`=> (2x^2 +11x) - (8x+44)=0`
`=> x(2x+11) - 4(2x+11)=0`
`=> (x-4)(2x+11)=0`
`=>`\(\left[{}\begin{matrix}x-4=0\\2x+11=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4\\2x=-11\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4\\x=-\dfrac{11}{2}\end{matrix}\right.\)
\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\\ \left(x-3\right)\cdot5=\left(2x+1\right)\cdot3\\ x5-15=6x+3\\ x5-6x=3+15\\ -x=18\\ \Rightarrow x=-18\)
\(\dfrac{x+1}{22}=\dfrac{6}{x}\\ \left(x+1\right)\cdot x=6\cdot22\\ \left(x+1\right)\cdot x=2\cdot3\cdot2\cdot11\\ \left(x+1\right)\cdot x=12\cdot11\\ \Rightarrow x=11\)
\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\\ \left(2x-1\right)\cdot\left(2x+1\right)=21\cdot3\\ \left(2x-1\right)\cdot\left(2x+1\right)=7\cdot3\cdot3\\ \left(2x-1\right)\cdot\left(2x+1\right)=7\cdot9\\ \Rightarrow2x+1=9\\ 2x=8\\ x=4\)
Tìm x, biết :
a, (2x +3)2 - (2x +1). (2x-1) = 22
b, x3 - 6x2 + 12x - 8 = -8
c, (x-2)3 - x( x - 1).(x+1)+ 6x.(x+3) = 22
d. (x+2) . (x2 - 2x+4) - x(x2 +2) = 15
a/ \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)
<=> \(\left(2x+3\right)^2-\left(4x^2-1\right)=22\)
<=> \(\left(2x+3\right)^2-4x^2+1=22\)
<=> \(\left(2x+3-2x\right)\left(2x+3+2x\right)=21\)
<=> \(3\left(4x+3\right)=21\)
<=> \(4x+3=7\)
<=> \(4x=4\)
<=> \(x=1\)
......................?
mik ko biết
mong bn thông cảm
nha ................
Tìm x:
2x(x-4)-x(2x+3)+22=0
(2x+3)(3x+2)+2(1-3x)(x+1/2)= 1
+) \(2x\left(x-4\right)-x\left(2x+3\right)+22=0\)
\(\Leftrightarrow2x^2-8x-2x^2-3x+22=0\)
\(\Leftrightarrow-11x+22=0\)
\(\Leftrightarrow-11\left(x-2\right)=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
+) \(\left(2x+3\right)\left(3x+2\right)+2\left(1-3x\right)\left(x+\frac{1}{2}\right)=1\)
\(\Leftrightarrow6x^2+4x+9x+6+\left(2-6x\right)\left(x+\frac{1}{2}\right)=1\)
\(\Leftrightarrow6x^2+13x+6+2x+1-6x^2-3x=1\)
\(\Leftrightarrow12x+7=1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
2x( x - 4 ) - x( 2x + 3 ) + 22 = 0
<=> 2x2 - 8x - 2x2 - 3x + 22 = 0
<=> -11x + 22 = 0
<=> -11x = -22
<=> x = 2
( 2x + 3 )( 3x + 2 ) + 2( 1 - 3x )( x + 1/2 ) = 1
<=> 6x2 + 13x + 6 + 2( -3x2 - 1/2x + 1/2 ) = 1
<=> 6x2 + 13x + 6 - 6x2 - x + 1 = 1
<=> 12x + 7 = 1
<=> 12x = -6
<=> x = -6/12 = -1/2
\(2x\left(x-4\right)-x\left(2x+3\right)+22=0\)
\(\Leftrightarrow2x^2-8x-2x^2-3x+22=0\)
\(\Leftrightarrow-11x+22=0\Leftrightarrow x=2\)
\(\left(2x+3\right)\left(3x+2\right)+2\left(1-3x\right)\left(x+\frac{1}{2}\right)=1\)
\(\Leftrightarrow6x^2+13x+6+2x+1-6x^2-3x=1\)
\(\Leftrightarrow12x+7=1\Leftrightarrow x=-\frac{1}{2}\)
Giải các phương trình sau:
a) 2 + x − 2 2 − 2 x − 4 3 − 5 6 2 − x = 0 ;
b) x − 1 − 2 x − 1 3 = 1 + 2 x − 2 2 .
Tìm x biết : a) 2x+3/15 = 7/5. b) x-2/9 = 8/3. c) -8/x = -x/18 d) 2x+3/6 = x-2/5. e) x+1/22 = 6/x f) 2x-1/2 = 5/x g) 2x-1/21 = 3/2x+1 h) 10x+5/6 = 5/x+1
a) \(2x+\frac{3}{15}=\frac{7}{5}\)
=> \(2x=\frac{7}{5}-\frac{3}{15}=\frac{21}{15}-\frac{3}{15}=\frac{18}{15}\)
=> \(x=\frac{18}{15}:2=\frac{18}{15}\cdot\frac{1}{2}=\frac{9}{15}\cdot\frac{1}{1}=\frac{9}{15}\)
b) \(x-\frac{2}{9}=\frac{8}{3}\)
=> \(x=\frac{8}{3}+\frac{2}{9}\)
=> \(x=\frac{24}{9}+\frac{2}{9}=\frac{26}{9}\)
c) \(\frac{-8}{x}=\frac{-x}{18}\)
=> x(-x) = (-8).18
=> -x2 = -144
=> x2 = 144(bỏ dấu âm)
=> x = \(\pm\)12
d) \(\frac{2x+3}{6}=\frac{x-2}{5}\)
=> 5(2x + 3) = 6(x - 2)
=> 10x + 15 = 6x - 12
=> 10x + 15 - 6x + 12 = 0
=> 4x + 27 = 0
=> 4x = -27
=> x = -27/4
e) \(\frac{x+1}{22}=\frac{6}{x}\)
=> x(x + 1) = 132
=> x(x + 1) = 11.12
=> x = 11
f) \(\frac{2x-1}{2}=\frac{5}{x}\)
=> x(2x - 1) = 10
=> 2x2 - x = 10
=> 2x2 - x - 10 = 0
tới đây tự làm đi nhé
g) \(\frac{2x-1}{21}=\frac{3}{2x+1}\)
=> (2x - 1)(2x + 1) = 63
=> 4x2 - 1 = 63
=> 4x2 = 64
=> x2 = 16
=> x = \(\pm\)4
h) Tương tự
a) \(\frac{2x+3}{15}=\frac{7}{5}\Leftrightarrow10x+15=105\Leftrightarrow10x=90\Rightarrow x=9\)
b) \(\frac{x-2}{9}=\frac{8}{3}\Leftrightarrow3x-6=72\Leftrightarrow3x=78\Rightarrow x=26\)
c) \(\frac{-8}{x}=\frac{-x}{18}\Leftrightarrow x^2=144\Leftrightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
d) \(\frac{2x+3}{6}=\frac{x-2}{5}\Leftrightarrow10x+15=12x-12\Leftrightarrow2x=27\Rightarrow x=\frac{27}{2}\)
e) \(\frac{x+1}{22}=\frac{6}{x}\Leftrightarrow x^2+x-132=0\Leftrightarrow\left(x-11\right)\left(x+12\right)=0\Leftrightarrow\orbr{\begin{cases}x=11\\x=-12\end{cases}}\)
f) \(\frac{2x-1}{2}=\frac{5}{x}\Leftrightarrow2x^2-x-10=0\Leftrightarrow\left(x-2\right)\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{5}{2}\end{cases}}\)
g) \(\frac{2x-1}{21}=\frac{3}{2x+1}\Leftrightarrow4x^2=64\Leftrightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\Leftrightarrow10x^2+15x-25=0\Leftrightarrow5\left(x-1\right)\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
1 Tìm x,biết
a) x-14=3x+18
b) (x+7).(x-9)=0
c) /2x-5/-7=22
d)(/2x/-5)-7=22
e)/x+3/+/x+9/+/x+5/=4x
2)Tìm x;y thuộc z biết
a)(2x-1).(y+4)
b)(2x-1).(y-4)
c)(5x+1).(y-1)=4
d)5xy-5x+y=5
1.
a, \(x-14=3x+18\)
\(\Rightarrow x-3x=18+14\)
\(\Rightarrow-2x=32\Rightarrow x=\frac{32}{-2}=-16\)
b, \(\left(x+7\right).\left(x-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+7=0\\x-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=9\end{cases}}}\)
c, \(\left|2x-5\right|-7=22\)
\(\Rightarrow\left|2x-5\right|=22+7\)
\(\Rightarrow\left|2x-5\right|=29\)
\(\Rightarrow\orbr{\begin{cases}2x+5=29\\2x-5=29\end{cases}}\Rightarrow\orbr{\begin{cases}2x=24\\2x=34\end{cases}\Rightarrow}\orbr{\begin{cases}x=12\\x=17\end{cases}}\)
d, \(\left(\left|2x\right|-5\right)-7=22\)
\(\Rightarrow\left(\left|2x\right|-5\right)=29\)
\(\Rightarrow\left|2x\right|=29+5\Rightarrow\left|2x\right|=34\Rightarrow x=\pm17\)
e, \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\)
Vì \(\left|x+3\right|\ge0;\left|x+9\right|\ge0;\left|x+5\right|\ge0;4x\ge0\)
Nên \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\ge0\)
\(\Rightarrow\left|x+3\right|>0\Rightarrow\left|x+3\right|=x+3\)
\(\left|x+9\right|>0\Rightarrow\left|x+9\right|=x+9\)
\(\left|x+5\right|>0\Rightarrow\left|x+5\right|=x+5\)
Ta có :
\(x+3+x+9+x+5=4x\)
\(\Rightarrow3x+\left(3+9+5\right)=4x\)
\(\Rightarrow4x-3x=17\)
\(\Rightarrow x=17\)
2. a , b sai đề bn
c, \(\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(\text{ }Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2/5 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
d, \(5xy-5x+y=5\)
\(\Rightarrow\left(5xy-5x\right)+y=5\)
\(\Rightarrow5x.\left(y-1\right)+y=5\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
x - 14 = 3x + 18
x - 3x = 18 + 14
-2x= 32
x= 32 : (-2)
x=-16
Tìm số tự nhiên x , biết:
a) 36 : x - 5 = 2 2
b) 3 . 70 - x + 5 : 2 = 46
c) 450 : 41 - 2 x - 5 = 3 2 . 5
d) 230 + 2 4 + x - 5 = 315 . 2018 0
e) 2 x + 2 x + 1 = 48
f) 3 x + 1 + 3 x = 2430