Những câu hỏi liên quan
HT
Xem chi tiết
ST
6 tháng 7 2018 lúc 12:15

1/

\(M=3x^2-4x+3=3\left(x^2-\frac{4}{3}x+1\right)=3\left(x^2-2x\cdot\frac{2}{3}+\frac{4}{9}\right)+\frac{5}{3}=3\left(x-\frac{2}{3}\right)^2+\frac{5}{3}\ge\frac{5}{3}>0\)

\(N=5x^2-10x+2018=5\left(x^2-2x+1\right)+2013=5\left(x-1\right)^2+2013\ge2013>0\)

\(P=x^2+2y^2-2xy+4y+7=\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)+3=\left(x-y\right)^2+\left(y+2\right)^2+3\ge3>0\)

2/

\(A=10x-6x^2+7=-6x^2+10x+7=-6\left(x^2-\frac{10}{6}x+\frac{25}{36}\right)-\frac{11}{6}=-6\left(x-\frac{5}{6}\right)^2-\frac{11}{6}\le-\frac{11}{6}< 0\)

\(B=-3x^2+7x+10=-3\left(x^2-\frac{7}{3}x+\frac{49}{36}\right)-\frac{311}{12}=-3\left(x-\frac{7}{6}\right)^2-\frac{311}{12}\le-\frac{311}{12}< 0\)

\(C=2x-2x^2-y^2+2xy-5=\left(2x-x^2-1\right)-\left(x^2-2xy+y^2\right)-4=-\left(x^2-2x+1\right)-\left(x-y\right)^2-4=-\left(x-1\right)^2-\left(x-y\right)^2-4\)\(\le-4< 0\)

Bình luận (0)
ML
Xem chi tiết
NL
15 tháng 10 2019 lúc 23:13

\(A=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)

\(B=2\left(x-\frac{3}{4}\right)^2+\frac{23}{8}\)

\(C=\left(x+\frac{3}{2}\right)^2+\frac{11}{4}\)

\(D=\left(x-5\right)^2+\left(3y+1\right)^2+4\)

\(E=\left(4x+1\right)^2+\left(y-2\right)^2+1\)

\(M=-\left(x+\frac{7}{2}\right)^2-\frac{11}{4}\)

\(N=-5\left(x-\frac{3}{5}\right)^2-\frac{41}{5}\)

\(C\) đề sai ví dụ \(x=3\Rightarrow C=2>0\)

\(D=-5\left(x-\frac{7}{10}\right)^2-\frac{131}{20}\)

Bình luận (0)
DT
Xem chi tiết
8D
Xem chi tiết
H24
31 tháng 10 2021 lúc 16:56

\(=\left(x^2+2x+1\right)+\left(y^2-8y+16\right)=\left(x+1\right)^2+\left(y-4\right)^2\ge0\forall x,y\)

dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)

Bình luận (1)
ES
Xem chi tiết
TM
12 tháng 9 2017 lúc 15:40

a, x2+ x+ 1

= x2 + 2x.1 +12

= ( x+1)2

Có: (x+1)2 >= 0

nên biểu thức luôn dương với mọi gia trị của x

tương tự với các phần còn lại

Bình luận (0)
ES
Xem chi tiết
NT
26 tháng 5 2022 lúc 20:18

a: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

b: \(2x^2+2x+1\)

\(=2\left(x^2+x+\dfrac{1}{2}\right)\)

\(=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\)

c: \(x^2+xy+y^2+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)

\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1>0\)

Bình luận (0)
ES
Xem chi tiết
NT
26 tháng 5 2022 lúc 20:24

a: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

b: \(2x^2+2x+1\)

\(=2\left(x^2+x+\dfrac{1}{2}\right)\)

\(=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\)

c: \(x^2+xy+y^2+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)

\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1>0\)

Bình luận (0)
ES
Xem chi tiết
NT
26 tháng 5 2022 lúc 21:45

 

undefined

Bình luận (0)
NK
Xem chi tiết