Bài 5: Những hằng đẳng thức đáng nhớ (Tiếp)

ES

Chứng minh rắng các biểu thức sau luôn có giá trị dương với mọi giá trị của x:

a/ x^2+x+1

b/ 2x^2+2x+1

c/ x^2+xy+y^2+1

d/x^2+4y^2+z^2-2x-6z+8y+15

NT
26 tháng 5 2022 lúc 20:24

a: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

b: \(2x^2+2x+1\)

\(=2\left(x^2+x+\dfrac{1}{2}\right)\)

\(=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\)

c: \(x^2+xy+y^2+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)

\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1>0\)

Bình luận (0)