Những câu hỏi liên quan
H24
Xem chi tiết
H24
16 tháng 12 2021 lúc 21:42

\(x+2y-\sqrt{\left(x^2-4xy+4y^2\right)^2}=x+2y-\left|x-2y\right|=x+2y-x+2y=4y\)

Bình luận (0)
HD
Xem chi tiết
NQ
24 tháng 3 2020 lúc 10:41

1) \(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)

= \(\frac{ \left(\sqrt{7}+\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}+\frac{\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\)

= \(\frac{\left(\sqrt{7}+\sqrt{5}\right)^2+\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\) = \(\frac{\left(\sqrt{7}\right)^2+2\sqrt{7}.\sqrt{5}+\left(\sqrt{5}\right)^2+\left(\sqrt{7}\right)^2-2\sqrt{7}.\sqrt{5}+\left(\sqrt{5}\right)^2}{\left(\sqrt{7}\right)^2-\left(\sqrt{5}\right)^2}\)

= \(\frac{7+2\sqrt{35}+5+7-2\sqrt{35}+5}{7-5}\) = \(\frac{24}{2}=12\)

2) \(x+2y-\sqrt{\left(x^2-4xy+4y^2\right)^2}\left(x\ge2y\right)\)

= \(x+2y-\sqrt{\left(x-2y\right)^4}\) = \(x+2y-|x-2y|\)

= \(x+2y-\left(x-2y\right)\) = \(x+2y-x+2y=4y\)

3)\(4x+\sqrt{\left(x-12\right)^2}\left(x\ge2\right)\)

= \(4x+x-12=5x-12\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
LL
2 tháng 9 2021 lúc 9:14

\(x-2y-\sqrt{x^2-4xy+4y^2}\left(1\right)=x-2y-\sqrt{\left(x-2y\right)^2}=x-2y-\left|x-2y\right|\)

TH1: \(x\ge2y\)

\(\left(1\right)=x-2y-x+2y=0\)

TH2: \(x< 2y\)

\(\left(1\right)=x-2y+x-2y=2x-4y\)

Bình luận (0)
PA
2 tháng 9 2021 lúc 9:18

= x - 2y - \(\sqrt{\left(x-2y\right)^2}\)

= x - 2y - /x-2y/

= x - 2y - x + 2y

= 0

Bình luận (0)
NT
2 tháng 9 2021 lúc 14:37

\(x-2y-\sqrt{x^2-4xy+4y^2}\)

\(=x-2y-\left|x-2y\right|\)

\(=\left[{}\begin{matrix}x-2y-x+2y=0\left(x\ge2y\right)\\x-2y+x-2y=2x-4y\left(x< 2y\right)\end{matrix}\right.\)

Bình luận (0)
LT
Xem chi tiết
H9
7 tháng 8 2023 lúc 12:28

a) \(x-2y-\sqrt{x^2-4xy+4y^2}\)

\(=x-2y-\sqrt{\left(x-2y\right)^2}\)

\(=x-2y-\left|x-2y\right|\)

TH1: \(x-2y--\left(x-2y\right)\)

\(=x-2y+x-2y\)

\(=2x-4y\)

TH2: \(x-2y-\left(x-2y\right)\)

\(=x-2y-x+2y\)

\(=0\)

b) \(x^2+\sqrt{x^4-8x^2+16}\)

\(=x^2+\sqrt{\left(x^2-4\right)^2}\)

\(=x^2+\left|x^2-4\right|\)

TH1: 

\(x^2+-\left(x^2-4\right)\)

\(=x^2-x^2+4\)

\(=4\)

TH2: 

\(x^2+\left(x^2-4\right)\)

\(=x^2+x^2-4\)

\(=2x^2-4\)

c) \(2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\) (x>5)

\(=2x-1-\sqrt{\dfrac{\left(x-5\right)^2}{x-5}}\)

\(=2x-1-\sqrt{x-5}\)

d) \(\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}\) (\(x>\sqrt{2}\))

\(=\sqrt{\dfrac{\left(x^2-2\right)^2}{x^2-2}}\)

\(=\sqrt{x^2-2}\)

e) \(\sqrt{\left(x^2-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}\)

\(=\left|x^2-4\right|+\dfrac{x-4}{\sqrt{\left(x-4\right)^2}}\)

\(=\left|x^2-4\right|+\sqrt{\dfrac{\left(x-4\right)^2}{\left(x-4\right)^2}}\)

\(=\left|x^2-4\right|+1\)

TH1: 

\(x^2-4+1\)

\(=x^2-3\)

TH2:

\(-\left(x^2-4\right)+1\)

\(=-x^2+4+1\)

\(=-x^2+5\)

Bình luận (0)
NT
7 tháng 8 2023 lúc 12:18

a: \(A=x-2y-\sqrt{x^2-4xy+4y^2}\)

=x-2y-|x-2y|

Khi x>=2y thì A=x-2y-x+2y=0

Khi x<2y thì A=x-2y+x-2y=2x-4y

b: \(B=x^2+\sqrt{x^4-8x^2+16}\)

\(=x^2+\left|x^2-4\right|\)

TH1: x>=2 hoặc x<=-2

B=x^2+x^2-4=2x^2-4

TH2: -2<=x<=2

B=x^2+4-x^2=4

c: \(C=2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\)

\(=2x-1-\sqrt{\dfrac{\left(x-5\right)^2}{x-5}}=2x-1-\sqrt{x-5}\)

d: \(D=\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}=\sqrt{\dfrac{\left(x^2-2\right)^2}{x^2-2}}=\sqrt{x^2-2}\)

Bình luận (0)
Xem chi tiết
DQ
2 tháng 10 2020 lúc 22:57

c) Đặt \(a=\sqrt{x-4},b=\sqrt{y-4}\)với \(a,b\ge0\)thì pt đã cho trở thành:

\(2\left(a^2+4\right)b+2\left(b^2+4\right)a=\left(a^2+4\right)\left(b^2+4\right)\). chia 2 vế cho \(\left(a^2+4\right)\left(b^2+4\right)\)thì pt trở thành : 

\(\frac{2b}{b^2+4}+\frac{2a}{a^2+4}=1\). Để ý rằng a=0 hoặc b=0 không thỏa mãn pt.

Xét \(a,b>0\). Theo BĐT  AM-GM ta có: \(b^2+4\ge2\sqrt{4b^2}=4b,a^2+4\ge4a\)

\(\Rightarrow VT\le\frac{2a}{4a}+\frac{2b}{4b}=1\), dấu đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a^2=4\\b^2=4\end{cases}\Leftrightarrow a=b=2\Leftrightarrow x=y=8}\)

Vậy x=8,y=8 là nghiệm của pt

Bình luận (0)
 Khách vãng lai đã xóa
HA
Xem chi tiết
NT
6 tháng 2 2022 lúc 19:59

a: \(=\dfrac{\left|x+2\right|}{x-1}\)

b: \(=x-2y-\left|x-2y\right|\)\(=\left[{}\begin{matrix}x-2y-x+2y=0\\x-2y+x-2y=2x-4y\end{matrix}\right.\)

c: \(=\dfrac{\left|x+2\right|}{\left(x+2\right)\left(x-2\right)}=\pm\dfrac{1}{x-2}\)

Bình luận (0)
NH
Xem chi tiết
AH
1 tháng 9 2019 lúc 0:54

Lời giải:

a)

\(\sqrt{1-4a+4a^2}-2a=\sqrt{1-2.2a+(2a)^2}-2a\)

\(=\sqrt{(2a-1)^2}-2a=|2a-1|-2a=(2a-1)-2a=-1\)

(do $a\geq \frac{1}{2}$ nên $|2a-1|=2a-1$)

b)

\(x-2y-\sqrt{x^2-4xy+4y^2}=x-2y-\sqrt{(x-2y)^2}=x-2y-|x-2y|\)

\(=x-2y-(2y-x)=2(x-2y)\)

(do $x< 2y$ nên $|x-2y|=-(x-2y)=2y-x$)

c)

\(x^2+\sqrt{x^4-8x^2+16}=x^2+\sqrt{(x^2)^2-2.4.x^2+4^2}\)

\(=x^2+\sqrt{(x^2-4)^2}=x^2+|x^2-4|=x^2+(4-x^2)=4\)

(do $x^2< 4$ nên $|x^2-4|=4-x^2$)

Bình luận (0)
DT
Xem chi tiết
ND
2 tháng 10 2021 lúc 21:24

a)=1-4a
b) = 2x - 4y
c) = 2x - 2 (nếu x>5)
=2x(nếu x<5)
 

Bình luận (0)
 Khách vãng lai đã xóa
TH
3 tháng 10 2021 lúc 7:44

-1.       2x.        2x

Bình luận (0)
 Khách vãng lai đã xóa
LT
3 tháng 10 2021 lúc 9:48

a) A= 1 - 4a
b) B=2x-4y
c) C= 2x-2 (nếu x>5)
  = 2x (nếu x< 5)

Bình luận (0)
 Khách vãng lai đã xóa
PM
Xem chi tiết