a) x- 2y- \(\sqrt{x^2-4xy+4y^2}\) với x = \(\sqrt{5}-1\);y = \(\sqrt{2}-1\)
b) \(\sqrt{x^2-8x+16}\) - \(\sqrt{x^2-4x+4}\) với x = 3\(\sqrt{2}\) -1
c) \(\sqrt{x+2\sqrt{x}+1}\) +\(\sqrt{x-2\sqrt{x}-1}\) với x = \(2\sqrt{7}+9\)
Rút gọn:
\(x+2y-\sqrt{\left(x^2-4xy+4y^2\right)^2}\) (x\(\ge\)2y)
\(x+2y-\sqrt{\left(x^2-4xy+4y^2\right)^2}=x+2y-\left|x-2y\right|=x+2y-x+2y=4y\)
1) \(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
2) \(x+2y-\sqrt{\left(x^2-4xy+4y^2\right)^2\left(x\ge2y\right)}\)
3) 4x + \(\sqrt{\left(x-12\right)^2}\left(x\ge2\right)\)
1) \(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
= \(\frac{ \left(\sqrt{7}+\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}+\frac{\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\)
= \(\frac{\left(\sqrt{7}+\sqrt{5}\right)^2+\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\) = \(\frac{\left(\sqrt{7}\right)^2+2\sqrt{7}.\sqrt{5}+\left(\sqrt{5}\right)^2+\left(\sqrt{7}\right)^2-2\sqrt{7}.\sqrt{5}+\left(\sqrt{5}\right)^2}{\left(\sqrt{7}\right)^2-\left(\sqrt{5}\right)^2}\)
= \(\frac{7+2\sqrt{35}+5+7-2\sqrt{35}+5}{7-5}\) = \(\frac{24}{2}=12\)
2) \(x+2y-\sqrt{\left(x^2-4xy+4y^2\right)^2}\left(x\ge2y\right)\)
= \(x+2y-\sqrt{\left(x-2y\right)^4}\) = \(x+2y-|x-2y|\)
= \(x+2y-\left(x-2y\right)\) = \(x+2y-x+2y=4y\)
3)\(4x+\sqrt{\left(x-12\right)^2}\left(x\ge2\right)\)
= \(4x+x-12=5x-12\)
2. rút gọn
\(x-2y-\sqrt{x^2-4xy+4y^2}\)
\(x-2y-\sqrt{x^2-4xy+4y^2}\left(1\right)=x-2y-\sqrt{\left(x-2y\right)^2}=x-2y-\left|x-2y\right|\)
TH1: \(x\ge2y\)
\(\left(1\right)=x-2y-x+2y=0\)
TH2: \(x< 2y\)
\(\left(1\right)=x-2y+x-2y=2x-4y\)
= x - 2y - \(\sqrt{\left(x-2y\right)^2}\)
= x - 2y - /x-2y/
= x - 2y - x + 2y
= 0
\(x-2y-\sqrt{x^2-4xy+4y^2}\)
\(=x-2y-\left|x-2y\right|\)
\(=\left[{}\begin{matrix}x-2y-x+2y=0\left(x\ge2y\right)\\x-2y+x-2y=2x-4y\left(x< 2y\right)\end{matrix}\right.\)
rút gọn các biểu thức sau
a)x-2y-\(\sqrt{x^2-4xy+4y^2}\) d)\(\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}\)
B)\(x^2+\sqrt{x^4-8x^2+16}\) e)\(\sqrt{\left(x^2-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}\)
C)\(2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\)
a) \(x-2y-\sqrt{x^2-4xy+4y^2}\)
\(=x-2y-\sqrt{\left(x-2y\right)^2}\)
\(=x-2y-\left|x-2y\right|\)
TH1: \(x-2y--\left(x-2y\right)\)
\(=x-2y+x-2y\)
\(=2x-4y\)
TH2: \(x-2y-\left(x-2y\right)\)
\(=x-2y-x+2y\)
\(=0\)
b) \(x^2+\sqrt{x^4-8x^2+16}\)
\(=x^2+\sqrt{\left(x^2-4\right)^2}\)
\(=x^2+\left|x^2-4\right|\)
TH1:
\(x^2+-\left(x^2-4\right)\)
\(=x^2-x^2+4\)
\(=4\)
TH2:
\(x^2+\left(x^2-4\right)\)
\(=x^2+x^2-4\)
\(=2x^2-4\)
c) \(2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\) (x>5)
\(=2x-1-\sqrt{\dfrac{\left(x-5\right)^2}{x-5}}\)
\(=2x-1-\sqrt{x-5}\)
d) \(\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}\) (\(x>\sqrt{2}\))
\(=\sqrt{\dfrac{\left(x^2-2\right)^2}{x^2-2}}\)
\(=\sqrt{x^2-2}\)
e) \(\sqrt{\left(x^2-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}\)
\(=\left|x^2-4\right|+\dfrac{x-4}{\sqrt{\left(x-4\right)^2}}\)
\(=\left|x^2-4\right|+\sqrt{\dfrac{\left(x-4\right)^2}{\left(x-4\right)^2}}\)
\(=\left|x^2-4\right|+1\)
TH1:
\(x^2-4+1\)
\(=x^2-3\)
TH2:
\(-\left(x^2-4\right)+1\)
\(=-x^2+4+1\)
\(=-x^2+5\)
a: \(A=x-2y-\sqrt{x^2-4xy+4y^2}\)
=x-2y-|x-2y|
Khi x>=2y thì A=x-2y-x+2y=0
Khi x<2y thì A=x-2y+x-2y=2x-4y
b: \(B=x^2+\sqrt{x^4-8x^2+16}\)
\(=x^2+\left|x^2-4\right|\)
TH1: x>=2 hoặc x<=-2
B=x^2+x^2-4=2x^2-4
TH2: -2<=x<=2
B=x^2+4-x^2=4
c: \(C=2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\)
\(=2x-1-\sqrt{\dfrac{\left(x-5\right)^2}{x-5}}=2x-1-\sqrt{x-5}\)
d: \(D=\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}=\sqrt{\dfrac{\left(x^2-2\right)^2}{x^2-2}}=\sqrt{x^2-2}\)
giải phương trình
\(a,\left(x^2+1\right)\left(x^2+y^2\right)=4xy^2\)
\(b,x^2-4xy+5y^2=16\)
\(c,2\left(x\sqrt{y-4}+y\sqrt{x-4}\right)=xy\)
\(d,2x+2y+2z=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)
\(e,x^2-12x+38-\sqrt{7-x}-\sqrt{x-5}=0\)
c) Đặt \(a=\sqrt{x-4},b=\sqrt{y-4}\)với \(a,b\ge0\)thì pt đã cho trở thành:
\(2\left(a^2+4\right)b+2\left(b^2+4\right)a=\left(a^2+4\right)\left(b^2+4\right)\). chia 2 vế cho \(\left(a^2+4\right)\left(b^2+4\right)\)thì pt trở thành :
\(\frac{2b}{b^2+4}+\frac{2a}{a^2+4}=1\). Để ý rằng a=0 hoặc b=0 không thỏa mãn pt.
Xét \(a,b>0\). Theo BĐT AM-GM ta có: \(b^2+4\ge2\sqrt{4b^2}=4b,a^2+4\ge4a\)
\(\Rightarrow VT\le\frac{2a}{4a}+\frac{2b}{4b}=1\), dấu đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a^2=4\\b^2=4\end{cases}\Leftrightarrow a=b=2\Leftrightarrow x=y=8}\)
Vậy x=8,y=8 là nghiệm của pt
Rút gọn biểu thức:
a) \(\dfrac{\sqrt{x^2+4x+4}}{x-1}\)
b) \(x-2y-\sqrt{x^2-4xy+4y^2}\) ( x>= 0; y>=0)
c) \(\dfrac{\sqrt{x^2+4x+4}}{x^2-4}\)
d) \(\dfrac{\sqrt{x^2+4x+4}}{x^2-2}\)
a: \(=\dfrac{\left|x+2\right|}{x-1}\)
b: \(=x-2y-\left|x-2y\right|\)\(=\left[{}\begin{matrix}x-2y-x+2y=0\\x-2y+x-2y=2x-4y\end{matrix}\right.\)
c: \(=\dfrac{\left|x+2\right|}{\left(x+2\right)\left(x-2\right)}=\pm\dfrac{1}{x-2}\)
Rút gọn các biểu thức sau:
a, \(\sqrt{1-4a+4a^2}\) -2a với a ≥ \(\frac{1}{2}\)
b, x- 2y- \(\sqrt{x^2-4xy+4y^2}\) với x<2y
c, x2 + \(\sqrt{x^4-8x^2+16}\) với x2<4
Lời giải:
a)
\(\sqrt{1-4a+4a^2}-2a=\sqrt{1-2.2a+(2a)^2}-2a\)
\(=\sqrt{(2a-1)^2}-2a=|2a-1|-2a=(2a-1)-2a=-1\)
(do $a\geq \frac{1}{2}$ nên $|2a-1|=2a-1$)
b)
\(x-2y-\sqrt{x^2-4xy+4y^2}=x-2y-\sqrt{(x-2y)^2}=x-2y-|x-2y|\)
\(=x-2y-(2y-x)=2(x-2y)\)
(do $x< 2y$ nên $|x-2y|=-(x-2y)=2y-x$)
c)
\(x^2+\sqrt{x^4-8x^2+16}=x^2+\sqrt{(x^2)^2-2.4.x^2+4^2}\)
\(=x^2+\sqrt{(x^2-4)^2}=x^2+|x^2-4|=x^2+(4-x^2)=4\)
(do $x^2< 4$ nên $|x^2-4|=4-x^2$)
Rút gọn các biểu thức sau:
a) \(A=\sqrt{1-4a+4a^2}-2a\)
b) \(B=x-2y-\sqrt{x^2-4xy+4y^2}\)
c) \(C=2x-1-\dfrac{\sqrt{x^2-10x+25}}{x-5}\)
a)=1-4a
b) = 2x - 4y
c) = 2x - 2 (nếu x>5)
=2x(nếu x<5)
a) A= 1 - 4a
b) B=2x-4y
c) C= 2x-2 (nếu x>5)
= 2x (nếu x< 5)
\(\left\{{}\begin{matrix}\left(\sqrt{x}-2y\right)\left(1-\dfrac{1}{2y\sqrt{x}}\right)=3\\\left(x+4y^2\right)\left(1+\dfrac{1}{4xy^2}\right)=25\end{matrix}\right.\)