Những câu hỏi liên quan
MN
Xem chi tiết
NM
16 tháng 8 2021 lúc 14:20

Hình tự vẽ nha

Kẻ phân giác \(AD,BK\perp AD\)
\(\sin\dfrac{A}{2}=\sin BAD\)
xét \(\Delta AKB\) vuông tại K,có: 
\(\sin BAD=\dfrac{BK}{AB}\left(1\right)\)
Xét \(\Delta BKD\) vuông tại K,có :
\(BK\le BD\) thay vào (1): 
\(\sin BAD\le\dfrac{BD}{AB}\left(2\right)\) 
lại có:\(\dfrac{BD}{CD}=\dfrac{AB}{AC}\)
\(\Rightarrow\dfrac{BD}{BD+CD}=\dfrac{AB}{AB+AC}\)
\(\Rightarrow\dfrac{BD}{BC}=\dfrac{AB}{AB+AC}\)
\(\Rightarrow BD=\dfrac{AB\cdot AC}{AB+AC}\) thay vào (2) 
\(\sin BAD\le\dfrac{\dfrac{AB\cdot AC}{AB+AC}}{AB}=\dfrac{BC}{AB+AC}\)
\(\RightarrowĐPCM\)

Tick plz

Bình luận (0)
NA
Xem chi tiết
DC
7 tháng 1 2018 lúc 22:04

....

Bình luận (0)
LM
Xem chi tiết
AH
11 tháng 8 2017 lúc 11:34

Lời giải:

Kẻ \(BE\perp AC(E\in AC)\)

Khi đó \(\sin A=\frac{BE}{c}\Rightarrow \frac{a}{\sin A}=\frac{ac}{BE}\)

Mặt khác, \(S_{ABC}=\frac{BE.b}{2}\Rightarrow BE=\frac{2S_{ABC}}{b}\)

\(\Rightarrow \frac{a}{\sin A}=\frac{abc}{2S_{ABC}}\). Hoàn toàn tương tự với \(\frac{b}{\sin B},\frac{c}{\sin C}\) ta có:

\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=\frac{abc}{2S_{ABC}}\) (đpcm)

Bình luận (0)
NT
11 tháng 8 2017 lúc 11:38

Gọi O là đường tròn ngoại tiếp tam giác ABC, D là trung điểm của BC, ta có:

\(OD\perp BC\)

\(OB=R;BD=\dfrac{1}{2}a\)

\(\widehat{BOD}=\widehat{A}\) (A là góc nội tiếp chắn cung BC, Ở là góc tâm chắn \(\dfrac{1}{2}\) cung BC)

Trong tam giác vuông DOB ta có:

\(sin\left(DOB\right)=\dfrac{BD}{OB}\)

\(\Rightarrow sinA=\dfrac{1}{2}\cdot\dfrac{a}{R}\Rightarrow\dfrac{a}{sinA}=2R\)

Chứng minh tương tự ta có:

\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)

Bình luận (0)
TK
11 tháng 8 2017 lúc 12:08

Kẻ AH, BE là đường cao của tam giác ABC.

Xét tam giác ABH vuông tại H có:

\(\sin B=\dfrac{AH}{AB}=\dfrac{AH}{c}\) (tỉ số lượng giác của góc nhọn)

\(\Rightarrow AH=c.\sin B\) (1)

Xét tam giác ACH vuông tại H có:

\(\sin C=\dfrac{AH}{AC}=\dfrac{AH}{b}\) (tỉ số lượng giác của góc nhọn)

\(\Rightarrow AH=b.\sin C\) (2)

Từ (1) và (2) \(\Rightarrow c.\sin B=b.\sin C\)

\(\Rightarrow\dfrac{c}{\sin C}=\dfrac{b}{\sin B}\) (3)

Xét tam giác ABE vuông tại E có:

\(\sin A=\dfrac{BE}{AB}=\dfrac{BE}{c}\) (tỉ số lượng giác)

\(\Rightarrow BE=c.\sin A\) (4)

Xét tam giác BEC vuông tại E có:

\(\sin C=\dfrac{BE}{BC}=\dfrac{BE}{a}\) (tỉ số lượng giác)

\(\Rightarrow BE=a.\sin C\) (5)

Từ (4) và (5) \(\Rightarrow c.\sin A=a.\sin C\)

\(\Rightarrow\dfrac{c}{\sin C}=\dfrac{a}{\sin A}\) (6)

Từ (3) và (6) \(\Rightarrow\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}\)

Bình luận (0)
NT
Xem chi tiết
AT
7 tháng 6 2021 lúc 17:47

a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)

b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)

Tương tự \(\Rightarrow CH=BC.sin^2B\)

Bình luận (0)
LV
Xem chi tiết
LN
24 tháng 7 2018 lúc 11:23

1)

Kẻ phân giác AD,BK vuông góc với AD
sin A/2=sinBAD
xét tam giác AKB vuông tại K,có:
sinBAD=BK/AB (1)
xét tam giác BKD vuông tại K,có
BK<=BD thay vào (1):
sinBAD<=BD/AB(2)
lại có:BD/CD=AB/AC
=>BD/(BD+CD)=AB/(AB+AC)
=>BD/BC=AB/(AB+AC)
=>BD=(AB*BC)/(AB+AC) thay vào (2)
sinBAD<=[(AB*BC)/(AB+AC)]/AB
= BC/(AB + AC)
=>ĐPCM

Bình luận (0)
MN
Xem chi tiết
NT
6 tháng 7 2021 lúc 11:48

a) Xét ΔABC vuông tại A có

\(\left\{{}\begin{matrix}\sin\widehat{A}=\dfrac{BC}{BC}=1\\\sin\widehat{B}=\dfrac{AC}{BC}\\\sin\widehat{C}=\dfrac{AB}{BC}\end{matrix}\right.\)

Ta có: \(\dfrac{BC}{\sin\widehat{A}}=\dfrac{BC}{1}=BC\)

\(\dfrac{AC}{\sin\widehat{B}}=\dfrac{AC}{\dfrac{AC}{BC}}=BC\)

\(\dfrac{AB}{\sin\widehat{C}}=\dfrac{AB}{\dfrac{AB}{BC}}=BC\)

Do đó: \(\dfrac{BC}{\sin\widehat{A}}=\dfrac{AC}{\sin\widehat{B}}=\dfrac{AB}{\sin\widehat{C}}\)

b) Ta có: \(2\cdot AB\cdot AC\cdot\cos\widehat{A}\)

\(=2\cdot AB\cdot AC\cdot0\)

=0

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=AB^2+AC^2+2\cdot AB\cdot AC\cdot\cos\widehat{A}\)

Bình luận (0)
HB
Xem chi tiết
N2
20 tháng 10 2018 lúc 21:04

A B C D H K a, Vẽ phân giác AD của góc BAC

Kẻ BH\(\perp\)AD tại H ; CK\(\perp AD\) tại K

Dễ thấy \(sin\widehat{A_1}=sin\widehat{A_2}=sin\dfrac{A}{2}=\dfrac{BH}{AB}=\dfrac{CK}{AC}=\dfrac{BH+CK}{AB+AC}\le\)\(\le\dfrac{BD+CD}{b+c}=\dfrac{a}{b+c}\)

b, Tượng tự \(sin\dfrac{B}{2}\le\dfrac{b}{a+c};sin\dfrac{C}{2}\le\dfrac{c}{a+b}\)

Mặt khác \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\)

\(\Rightarrow sin\dfrac{A}{2}.sin\dfrac{B}{2}.sin\dfrac{C}{2}\le\dfrac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{1}{8}\)

Bình luận (0)
NM
Xem chi tiết
NT
20 tháng 8 2023 lúc 23:57

b: \(\dfrac{AB\cdot BC}{2}\cdot sinB\)

\(=\dfrac{AB\cdot BC}{2}\cdot\dfrac{AC}{BC}=\dfrac{AB\cdot AC}{2}\)

\(=S_{ABC}\)

a: Xét ΔABD vuông tại A có tan ABD=AD/AB

Xét ΔCBA có BD là phân giác

nên AD/AB=CD/BC

=>\(\dfrac{AD}{AB}=\dfrac{CD}{BC}=\dfrac{AD+CD}{AB+BC}=\dfrac{AC}{AB+BC}\)

=>\(tan\left(ABD\right)=\dfrac{AC}{AB+BC}\)

Bình luận (0)
VN
Xem chi tiết
TC
5 tháng 9 2021 lúc 21:20

Phần chứng minh (*) khá quen thuộc, áp dụng phân tích đa thức thành nhân tử và kiến thức chuyển vế, bạn có thể tham khảo thêm

undefined

Bình luận (0)