\(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+......}}}}\) ( n dấu căn)
Bài 1
\(P=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+.....+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+.....+\sqrt{3}}}}}\)(tử có 2007 dấu căn; mẫu có 2006 dấu căn)
\(F=\frac{2-\sqrt{2+\sqrt{2+\sqrt{2+.....+\sqrt{2}}}}}{2-\sqrt{2+\sqrt{2+\sqrt{2+.....+\sqrt{2}}}}}\)(TỬ CÓ N DẤU CĂN; MẪU CÓ N-1 DẤU CĂN)
tính \(\sqrt{2-\sqrt{2+\sqrt{2...+\sqrt{2}}}}.\sqrt{2+\sqrt{2+\sqrt{2...+\sqrt{2}}}}\)
(mỗi hạng tử có n dấu căn, trong căn thứ nhất chỉ có 1 dấu (-), còn lại là dấu (+))
Chứng minh rằng \(\frac{1}{4}< \frac{\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}{\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}< \frac{3}{10}\) (ở tử có n dấu căn. ở mẫu có n-1 dấu căn)
Chứng minh rằng \(\frac{1}{4}< \frac{\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}{\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}< \frac{3}{10}\) ( ở tử có n dấu căn, ở mẫu có n-1 dấu căn )
Chứng minh rằng: \(\frac{1}{4}< \frac{\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}{\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}< \frac{3}{10}\)( ở tử có n dấu căn, ở mẫu có n - 1 dấu căn)
gải phương trình \(\sqrt[3]{x}-3\sqrt[3]{x}=20\)
gải phương trình\(x\sqrt[]{\frac{1}{x}}-2x\sqrt[3]{x}=20\)
CMR: \(\frac{1}{4}< \frac{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2+...+\sqrt{2}}}}< \frac{3}{10}\) (ở tử có n dấu căn, mẫu có n - 1 dấu căn)
CMR \(\dfrac{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}}{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}}>\frac{1}{4}\)
Trên tử có n dấu căn
Dưới mẫu có n-1 dấu căn
Em thử nhé, không chắc đâu ak. Nhất là chỗ "thực hiện n lần như vậy" em ko rõ là thực hiện n hay là n - 1 lần nữa ... Mong là đúng ạ.
Gọi biểu thức trên là A
Đặt \(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}=a\left(\text{n dấu căn }\right)\)
Suy ra \(a^2-2=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\left(\text{n - 1 dấu căn }\right)\)
Suy ra \(A=\frac{2-a}{2-\left(a^2-2\right)}=\frac{2-a}{4-a^2}=\frac{2-a}{\left(2-a\right)\left(2+a\right)}=\frac{1}{2+a}\)
Ta cần chứng minh \(\frac{1}{2+a}>\frac{1}{4}\Leftrightarrow2+a< 4\Leftrightarrow a< 2\)
Thật vậy,ta có: \(a=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}\)
\(< \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}}\)
\(=\sqrt{2+\sqrt{4}}=\sqrt{4}=2\) (thực hiện n lần như vậy)
Suy ra đpcm.
CMR: \(\frac{1}{4}< \frac{2-\sqrt{2+\sqrt{2+\sqrt{2}+...+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2+\sqrt{2}+...+\sqrt{2}}}}< \frac{3}{10}\)với ở tử có n dấu căn, ở mẫu có n - 1 dấu căn \(\left(n\in N;n\ge1\right)\)
Chứng mình rằng :
\(\frac{1}{4}< \frac{2-\sqrt{2+\sqrt{2+\sqrt{2+....+\sqrt{2}}}}}{2-\sqrt{2+\sqrt{2+\sqrt{2+....+\sqrt{2}}}}}< \frac{3}{10}\)
(ở tử có n dấu căn : ở mẩu có n-1 dấu căn )
Đặt \(a=\sqrt{2+\sqrt{2+...+\sqrt{2}}}\)(có n dấu căn )
\(\Rightarrow a^2=2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}\)(có n-1 dấu căn)
\(\Rightarrow\sqrt{2+\sqrt{2+...+\sqrt{2}}}=a^2-2\)(có n-1 dấu căn)
Ta có \(A=\frac{2-\sqrt{2+\sqrt{2+...+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\)(ở tử có n dấu căn : ở mẩu có n-1 dấu căn )
\(A=\frac{2-a}{2-\left(a^2-2\right)}=\frac{2-a}{4-a^2}=\frac{1}{a+2}\)
Dễ thấy \(\sqrt{2}a< \sqrt{2+\sqrt{2+...+\sqrt{2+2}}}\)(có n dấu căn)
\(1,4< a< 2\)
Suy ra \(3,4< a+2< 4\)
\(\frac{1}{3,4}>\frac{1}{a+2}>\frac{1}{4}\)
\(\frac{3}{10}>\frac{1}{a+2}>\frac{1}{4}\)hay\(\frac{1}{4}< A< \frac{3}{10}\)(1)
Từ (1) suy ra ĐPCM
Chứng minh rằng: \(\frac{1}{4}< \frac{\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}{\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}< \frac{3}{10}\)( ở tử có n dấu căn, ở mẫu có n-1 dấu căn)
Ai giúp mình với huhu :(
Có nhầm đề không vậy? Ở tử có n dấu căn, ở mẫu có n-1
dấu căn . giả sử có một biểu thức bất kì: \(\frac{\sqrt{2+\sqrt{2}}}{\sqrt{2}}>1\)
vậy sao chứng minh?