Rút gọn:
\(\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+...+\dfrac{2n-1}{4+\left(2n-1\right)^4}\)
a) Tìm a, b : \(14a+6b=84+ab\)
b) Rút gọn \(\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+...+\dfrac{2n-1}{4+\left(2n-1\right)^4}\)
câu a: 14a + 6b = 84 + ab
<=> 14a + 6b - 84 - ab =0
<=> (14a -84) + (6b -ab)=0
<=> 14( a- 6) - b(a-6)=0
<=> (a - 6)(14-b) = 0
Vậy a=6, b=14
Đặt \(A=\dfrac{n}{4+n^4}\)
\(=\dfrac{n}{n^4+4n^2+4-4n^2}\)
\(=\dfrac{n}{\left(n^2+2\right)^2-\left(2n\right)^2}\)
\(=\dfrac{n}{\left(n^2+2-2n\right)\left(n^2+2+2n\right)}\)
\(\Rightarrow4A=\dfrac{4n}{\left(n^2-2n+2\right)\left(n^2+2n+2\right)}\)
\(=\dfrac{1}{n^2-2n+2}-\dfrac{1}{n^2+2n+2}\)
Đặt \(P=\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+...+\dfrac{2n-1}{4+\left(2n-1\right)^4}\)
\(\Rightarrow4P=\dfrac{4}{4+1^4}+\dfrac{12}{4+3^4}+...+\dfrac{4\left(2n-1\right)}{4+\left(2n-1\right)^4}\)
\(=\dfrac{1}{1^2-2\times1+2}-\dfrac{1}{1^2+2\times1+2}\)
\(+\dfrac{1}{3^2-2\times3+2}-\dfrac{1}{3^2+2\times3+2}+...+\)
\(\dfrac{1}{\left(2n-1\right)^2-2\left(2n-1\right)+2}-\dfrac{1}{\left(2n-1\right)^2+2\left(2n-1\right)+2}\)
\(=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{17}+...+\)
\(\dfrac{1}{\left(2n-1\right)^2-2\left(2n-1\right)+2}-\dfrac{1}{4n^2-4n+1+4n-2+2}\)
\(=1-\dfrac{1}{4n^2+1}\)
\(\Rightarrow P=\dfrac{1}{4}-\dfrac{1}{4\left(4n^2+1\right)}\)
Rút gọn biểu thức \(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+\dfrac{3}{x^4}+...+\dfrac{n}{x^{n+1}}\) bằng:
A. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
B. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{2n}\left(x-1\right)^2}\)
C. \(S=\dfrac{x^n-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
D. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
Rút gọn biểu thức \(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+\dfrac{3}{x^4}+...+\dfrac{n}{x^{n+1}}\) bằng:
A. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
B. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{2n}\left(x-1\right)^2}\)
C. \(S=\dfrac{x^n-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
D. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
\(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+...+\dfrac{n}{x^{n+1}}\)
\(\Rightarrow x.S\left(x\right)=\dfrac{1}{x}+\dfrac{2}{x^2}+\dfrac{3}{x^3}+...+\dfrac{n}{x^n}\)
\(\Rightarrow x.S\left(x\right)-S\left(x\right)=\dfrac{1}{x}+\dfrac{1}{x^2}+\dfrac{1}{x^3}+...+\dfrac{1}{x^n}-\dfrac{n}{x^{n+1}}\)
\(\Rightarrow\left(x-1\right)S\left(x\right)=\dfrac{1}{x}.\dfrac{1-\left(\dfrac{1}{x}\right)^n}{1-\dfrac{1}{x}}-\dfrac{n}{x^{n+1}}=\dfrac{x^n-1}{x^n\left(x-1\right)}-\dfrac{n}{x^{n+1}}=\dfrac{x^{n+1}-x-n\left(x-1\right)}{x^{n+1}\left(x-1\right)}\)
\(\Rightarrow S\left(x\right)=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
CMR
\(\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+....\dfrac{2n-1}{4+\left(2n-1\right)^4}=\dfrac{n^2}{4n^2+1}\)
với mọi n nguyên dương
Lời giải:
Ta có: \(4+(2n-1)^4=[(2n-1)^2+2]^2-[2(2n-1)]^2\)
\(=[(2n-1)^2+2-2(2n-1)][(2n-1)^2+2+2(2n-1)]\)
\(\Rightarrow \frac{2n-1}{4+(2n-1)^4}=\frac{2n-1}{[(2n-1)^2+2-2(2n-1)][(2n-1)^2+2+2(2n-1)]}\)
\(=\frac{1}{4}\left(\frac{1}{(2n-1)^2+2-2(2n-1)}-\frac{1}{(2n-1)^2+2+2(2n-1)}\right)\)
Do đó:
\(\frac{1}{4+1^4}=\frac{1}{4}(1-\frac{1}{5})\)
\(\frac{3}{4+3^4}=\frac{1}{4}(\frac{1}{5}-\frac{1}{17})\)
\(\frac{5}{4+5^4}=\frac{1}{4}(\frac{1}{17}-\frac{1}{37})\)
......
Do đó:
\(\frac{1}{4+1^4}+\frac{3}{4+3^4}+...+\frac{2n-1}{4+(2n-1)^4}=\frac{1}{4}(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{17}+...+\frac{1}{(2n-1)^2+2-2(2n-1)}-\frac{1}{(2n-1)^2+2+2(2n-1)})\)
\(=\frac{1}{4}(1-\frac{1}{(2n-1)^2+2+2(2n-1)})=\frac{1}{4}(1-\frac{1}{(2n-1+1)^2+1})\)
\(=\frac{1}{4}(1-\frac{1}{4n^2+1})=\frac{n^2}{4n^2+1}\)
Ta có đpcm.
n=1 ; \(\dfrac{1}{4+1^4}=\dfrac{1}{5}=\dfrac{1^2}{4.^2+1}=\dfrac{1}{5};dung\)
giả sử n =k đúng \(\Leftrightarrow S=\dfrac{1}{4+1^4}+...+\dfrac{2k-1}{4+\left(2k-1\right)^4}=\dfrac{k^2}{4k^2+1}\) (*)
cần c/m đúng n =k+1 ;
c/m
với n=k+1
\(S=\left(\dfrac{1}{4+1^4}+...+\dfrac{2k-1}{4+\left(2k-1\right)^4}\right)+\dfrac{2\left(k+1\right)-1}{4+\left(2\left(k+1\right)-1\right)^4}\)
từ (*) =>\(S=\dfrac{k^2}{4k^2+1}+\dfrac{2\left(k+1\right)-1}{4+\left(2\left(k+1\right)-1\right)^4}\)
\(k+1=t\Leftrightarrow k=t-1\)
\(S=\dfrac{t^2-2t+1}{4\left(t^2-2t+1\right)+1}+\dfrac{2t-1}{4+\left(2t-1\right)^4}\)
\(S=\dfrac{t^2-2t+2}{4t^2-8t+5}+\dfrac{2t-1}{\left(4t^2+1\right)\left(4t^2-8t+5\right)}=\dfrac{\left(t^2-2t+1\right)\left(4t^2+1\right)+2t-1}{\left(4t^2+1\right)\left(4t^2-8t+5\right)}\)\(S=\dfrac{t^2\left(4t^2-8t+5\right)}{\left(4t^2+1\right)\left(4t^2-8t+5\right)}=\dfrac{t^2}{\left(4t^2+1\right)}=\dfrac{\left(k+1\right)^2}{4\left(k+1\right)^2+1}\)
Vậy tổng trên đúng với k +1
theo Quy nạp ta có dpcm
Tính :6/ lim\(\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\)
7/ lim \(\dfrac{\sqrt{n^3-2n+5}}{3+5n}\)
10/ lim\(\dfrac{1+3+5+...+\left(2n+1\right)}{3n^3+4}\)
tìm biểu thức ngắn gọn hơn cho tích sau đây :
P \(=\left(1-\dfrac{4}{1}\right)\left(1-\dfrac{4}{9}\right)\left(1-\dfrac{4}{25}\right)....\left(1-\dfrac{4}{\left(2n-1\right)^2}\right)\)
1 CM
a, \(\left(\dfrac{1}{1}+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{2n-1}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2n}\right)=\dfrac{1}{n+1}+\dfrac{1}{n+2}+...+\dfrac{1}{2n}\)( n∈Z)
b, \(\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}=\dfrac{99}{50}-\dfrac{97}{49}+...+\dfrac{7}{4}-\dfrac{5}{3}+\dfrac{3}{2}\)
\(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{2n-1}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2n}\right)=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2n-1}+\frac{1}{2n}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2n}\right)=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n-1}+\frac{1}{2n}-\frac{1}{1}-\frac{1}{2}-....-\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n+2}+....+\frac{1}{2n}\left(\text{đpcm}\right)\)
Tính các tích sau:
P\(_1\) =\(\left(1+\dfrac{2}{4}\right)\left(1+\dfrac{2}{10}\right)\left(1+\dfrac{2}{18}\right)....\left(1+\dfrac{2}{n^2+3n}\right)\)
P\(_2\) =\(\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)....\left(1+\dfrac{2}{n^2+2n}\right)\)
P\(_3\) = \(\left(1-\dfrac{1}{1+2}\right)\left(1-\dfrac{1}{1+2+3}\right)\left(1-\dfrac{1}{1+2+3+4}\right).....\left(1-\dfrac{1}{1+2+3+4+...+n}\right)\)
P\(_4\) = \(\dfrac{2^4+4}{4^4+4}.\dfrac{6^4+4}{8^4+4}.\dfrac{8^4+4}{10^4+4}....\dfrac{18^4+4}{20^4+4}\)
Câu 1 : Rút gọn
\(G=\dfrac{6!}{\left(m-2\right)\left(m-3\right)}.\left[\dfrac{\left(m+1\right)!}{5!.\left(m-4\right)!.\left(m+1\right)}-\dfrac{m!}{12.3!.\left(m-4\right)!}\right]\)
Câu 2 : CMR
\(1+\dfrac{1}{1!}+\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{n!}< 3\forall n\in N\)