chứng minh rằng : a+a2+a3+....+a2*n chia hết cho a+1 với mọi a ; n thuộc tập số tự nhiên
a) Chứng minh rằng: a3- a chia hết cho 6 với mọi giá trị a thuộc Z
b)Cho a,b,c thuộc Z thỏa mãn: a+b+c= 450 mũ 2023. Chứng minh rằng: a2+b2+c2 chia hết cho 6
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
chứng minh: (a+a2+a3+a4+...+a29+a30)chia hết cho (a+1) với a thuộc N
\(=\left(a+a^2\right)+\left(a^3+a^4\right)+\left(a^5+a^6\right)+...+\left(a^{29}+a^{30}\right)=\)
\(=a\left(a+1\right)+a^3\left(a+1\right)+a^5\left(a+1\right)+...+a^{29}\left(a+1\right)=\)
\(=\left(a+1\right)\left(a+a^3+a^5+...+a^{29}\right)⋮\left(a+1\right)\)
Bài 1:Cho các số thực a,b,c thỏa mãn a^3 - b^2 - b = b^3 - c^2 - c = c^3 - a^2 - a =1/3. Chứng minh rằng a=b=c
Bài 2:Cho các số nguyên a1,a2,a3,...,an có tổng chia hết cho 3. Chứng minh P= a1^3 + a2^3 + a3^3 + ... +an^3 chia hết cho 3
Bài 2.
\(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮3\)
( 3 số nguyên liên tiếp chia hết cho 3)
\(P-\left(a_1+a_2+a_3+...+a_n\right)=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\) chia hết cho 3
=> P chia hết cho 3
Chứng minh rằng với mọi số nguyên a thì a2 (a + 1) + 2a (a + 1) chia hết cho 6
\(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\) là 3 số nguyên liên tiếp nên chia hết cho 6
Cho n số a1, a2, a3, ... , an mà mỗi số bằng 1 hoặc -1. Gọi Sn= a1.a2+a2.a3+a3.a4+...+an-1.an+an.a1
a) Chứng tỏ: S5 khác o
b) Chứng tỏ S6 khác 0
c) Chứng tỏ rằng: Sn=0 khi và chỉ khi n chia hết cho 4
Cho a1;a2;a3;a4;a5;.......;a2015 thuộc N (1;2;3;......;2015 là số thứ tự)
biết a1+a2+a3+.........+a2015=2015*2016
Chứng minh rằng a1^3 +a2^3 +a3^3 +...........+a2015^3 chia hết cho 6
Cho các số nguyên dương : a1;a2;a3;....a2015 sao cho :
N = a1 + a2 + a3 +.....+ a2015 chia hết cho 30
Chứng minh : M= a15 + a25 + a35 + ..... + a20155 chia hết cho 30
Cho a= \(\sqrt{2}-1\)
a) Viết a2 , a3 dưới dạng \(\sqrt{m}-\sqrt{m-1}\) trong đó m là số tự nhiên .
b*) Chứng minh rằng với mọi số nguyên dương n, số an viết được dưới dạng trên.
1) Cho a^2+b^2/c^2+d^2=a.b/c.d với a,b,c,d khác 0 . Hãy Chứng Minh rằng a/b=c/d hoặc a/b=d/c
2) Tính tổng : A = c/a1.a2 + c/a2.a3 + .......+c/an-1.an Và a2 -a1=a3-a2=....=an-an-1 =k ( a1 là số hạng đầu tiêng , an là số hạng thứ n)
cho n số nguyên a1,a2,a3,...,an
chứng minh rằng
S=|a1-a2|+|a2-a3|+...+|an-1-an|+|an-a1|
mấy số đằng sau a là số thứ tự nhé