Tính
P = (1 - \(\dfrac{1}{1^2}\)) . (1 - \(\dfrac{1}{3^2}\)) ... (1 - \(\dfrac{1}{100^2}\)
Tính A= \(\dfrac{1}{2}+\dfrac{1}{2}.\left(1+2\right)+\dfrac{1}{3}.\left(1+2+3\right)+...+\dfrac{1}{100}.\left(1+2+3+...+100\right)\)
Áp dụng \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)
\(\Rightarrow\dfrac{1}{n}\left(1+2+...+n\right)=\dfrac{n\left(n+1\right)}{2n}=\dfrac{n+1}{2}\)
Vậy:
\(A=\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{101}{2}=\dfrac{1+2+3+...+100}{2}-1\)
\(=\dfrac{100.101}{2}-1=5049\)
Tính giá trị biểu thức \(P=\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+...+\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{100^2}}\).
\(\sqrt{1+\dfrac{1}{n}+\dfrac{1}{\left(n+1\right)^2}}\\ =\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}+\dfrac{2}{n}-\dfrac{2}{n+1}-\dfrac{2}{n\left(n+1\right)}}\\ =\sqrt{\left[1+\dfrac{1}{n}-\dfrac{1}{\left(n+1\right)}\right]^2}=\left|1+\dfrac{1}{n}-\dfrac{1}{\left(n+1\right)}\right|\)
\(\Leftrightarrow P=1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{99}-\dfrac{1}{100}=98+\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{9849}{100}\)
Tính
\(C=\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+..+\dfrac{1}{2^{99}}-\dfrac{1}{2^{100}}\)
\(Tính:1+\dfrac{1+2}{2}+\dfrac{1+2+3}{3}+...+\dfrac{1+2+...+100}{100}\)
\(1+\dfrac{1+2}{2}+\dfrac{1+2+3}{3}+........+\dfrac{1+2+......+100}{100}\)
\(=\dfrac{2}{2}+\dfrac{3.2}{2}+\dfrac{\dfrac{4.3}{2}}{3}+..........+\dfrac{\dfrac{101.100}{2}}{100}\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+...........+\dfrac{101}{2}\)
\(=\dfrac{103.100}{2}=\dfrac{10300}{2}=5150\)
Tính: a) A=\(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+...+\(\dfrac{1}{2^{100}}\)
b) \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{2023.2024}\)
cứu tôi mng owiiii :((
a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\)
\(2A=2\cdot\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\right)\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{101}}\)
\(2A-A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2}-\dfrac{1}{2^2}-...-\dfrac{1}{2^{100}}\)
\(A=1-\dfrac{1}{2^{100}}\)
b) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2023\cdot2024}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\)
\(=1-\dfrac{1}{2024}\)
\(=\dfrac{2024}{2024}-\dfrac{1}{2024}\)
\(=\dfrac{2023}{2024}\)
Tính giá trị biểu thức
P = \(\dfrac{1}{2^2}\)+ \(\dfrac{1}{2^3}\)+ \(\dfrac{1}{2^4}\)+ ......+ \(\dfrac{1}{2^{100}}\)
\(P=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\)
\(\Rightarrow\dfrac{1}{2}P=\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{101}}\)
\(\Rightarrow\dfrac{1}{2}P-P=\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{101}}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{100}}\)
\(\Rightarrow-\dfrac{1}{2}P=\dfrac{1}{2^{101}}-\dfrac{1}{2^2}\)
\(\Rightarrow P=\left(\dfrac{1}{2^{101}}-\dfrac{1}{2^2}\right):\left(-\dfrac{1}{2}\right)\)
Câu 5: (1 điểm): Tính tổng sau:
Q = (1-\(\dfrac{1}{2^2}\)) · (1-\(\dfrac{1}{3^2}\)) · (1-\(\dfrac{1}{4^2}\)) · … · (1-\(\dfrac{1}{100^2}\))
\(Q=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\cdot...\cdot\left(1-\dfrac{1}{100^2}\right)\)
\(=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)
\(=\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{101}{200}\)
Tính hợp lý
\(A= (\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\) B= \(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}}{\dfrac{1}{9}+\dfrac{2}{8}+\dfrac{3}{7}+...+\dfrac{8}{2}+\dfrac{9}{1}})\)
1/ Cho A= \(\dfrac{1}{3}\)-\(\dfrac{2}{3^2}\)+\(\dfrac{3}{3^3}\)-\(\dfrac{4}{3^4}\)+.....+\(\dfrac{99}{3^{99}}\)-\(\dfrac{100}{3^{100}}\) Chứng minh A < \(\dfrac{3}{16}\)
2/ Cho B=(\(\dfrac{1}{2^2}\)-1)(\(\dfrac{1}{3^2}\)-1)....(\(\dfrac{1}{100^2}\)-1) So sánh B và \(\dfrac{-1}{2}\)
2:
\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)
\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)
1) Tính
\(\dfrac{7^4.3-7^3}{7^4.6-7^3.2}\) ; \(\dfrac{10^3+5.10^2+5}{6^3+3.6^2+3^2}\) ; \(E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
2) Tìm x biết
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x.\left(x+1\right)}\) ; \(3^{x+1}+3^{x+3}=810\)
MN ƠI ! GIÚP MIK VS > . <
Bài 1:
a) Ta có: \(\dfrac{7^4\cdot3-7^3}{7^4\cdot6-7^3\cdot2}\)
\(=\dfrac{7^3\cdot\left(7\cdot3-1\right)}{7^3\cdot2\left(7\cdot3-1\right)}\)
\(=\dfrac{1}{2}\)
c) Ta có: \(E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
\(\Leftrightarrow\dfrac{1}{3}\cdot E=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\)
\(\Leftrightarrow E-\dfrac{1}{3}\cdot E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\right)\)
\(\Leftrightarrow E\cdot\dfrac{2}{3}=1-\dfrac{1}{3^{101}}\)
\(\Leftrightarrow E=\dfrac{3-\dfrac{3}{3^{101}}}{2}=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)