Những câu hỏi liên quan
H24
Xem chi tiết
NL
30 tháng 12 2020 lúc 21:34

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

Bình luận (1)
NL
30 tháng 12 2020 lúc 21:37

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)

Bình luận (0)
NL
30 tháng 12 2020 lúc 21:39

Câu 1:

\(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(VT=1-\dfrac{1}{n}< 1\) (đpcm)

Bình luận (0)
VT
Xem chi tiết
MA
Xem chi tiết
NL
7 tháng 5 2023 lúc 11:34

Tách biểu thức như sau:

\(\left(\dfrac{a}{9}+\dfrac{b}{12}+\dfrac{c}{6}+\dfrac{8}{abc}\right)+\left(\dfrac{a}{18}+\dfrac{b}{24}+\dfrac{2}{ab}\right)+\left(\dfrac{b}{16}+\dfrac{c}{8}+\dfrac{2}{bc}\right)+\left(\dfrac{a}{9}+\dfrac{c}{6}+\dfrac{2}{ca}\right)+\left(\dfrac{13a}{18}+\dfrac{13b}{24}\right)+\left(\dfrac{13b}{48}+\dfrac{13c}{24}\right)\)

Bình luận (3)
TH
14 tháng 5 2023 lúc 12:06
(Nháp)\(a+2b+3c=20\)Với các tham số \(0< x,y,z< 1\) ta có:\(A=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)\(=xa+yb+zc+\left(\dfrac{3}{a}+\left(1-x\right)a\right)+\left(\dfrac{9}{2b}+\left(1-y\right)b\right)+\left(\dfrac{4}{c}+\left(1-z\right)c\right)\)\(\ge^{Cauchy}xa+yb+zc+2\left(\sqrt{3\left(1-x\right)}+\sqrt{\dfrac{9\left(1-y\right)}{2}}+\sqrt{4\left(1-z\right)}\right)\)Chọn các tham số x,y,z (0<x,y,z<1) sao cho:\(\left\{{}\begin{matrix}x=\dfrac{y}{2}=\dfrac{z}{3}\\\dfrac{3}{a}=\left(1-x\right)a\\\dfrac{9}{2b}=\left(1-y\right)b\\\dfrac{4}{c}=\left(1-z\right)c\end{matrix}\right.\) và \(a+2b+3c=20\) \(\Rightarrow\left\{{}\begin{matrix}y=2x;z=3x\\a=\sqrt{\dfrac{3}{1-x}}\\b=\sqrt{\dfrac{9}{2\left(1-y\right)}}\\c=\sqrt{\dfrac{4}{1-z}}\end{matrix}\right.\) và \(a+2b+3c=20\)\(\Rightarrow\left\{{}\begin{matrix}y=2x;z=3x\\a=\sqrt{\dfrac{3}{1-x}}\\b=\sqrt{\dfrac{9}{2\left(1-2x\right)}}\\c=\sqrt{\dfrac{4}{1-3x}}\end{matrix}\right.\) và \(a+2b+3c=20\)\(\Rightarrow\sqrt{\dfrac{3}{1-x}}+2\sqrt{\dfrac{9}{2\left(1-2x\right)}}+3\sqrt{\dfrac{4}{1-3x}}=20\)Bấm máy ta được \(x=\dfrac{1}{4}\Rightarrow y=\dfrac{1}{2};z=\dfrac{3}{4}\)\(\Rightarrow\left\{{}\begin{matrix}a=\sqrt{\dfrac{3}{1-\dfrac{1}{4}}}=2\\b=\sqrt{\dfrac{9}{2\left(1-2.\dfrac{1}{4}\right)}}=3\\c=\sqrt{\dfrac{4}{1-3.\dfrac{1}{4}}}=4\end{matrix}\right.\) 
Bình luận (1)
SL
Xem chi tiết
EC
Xem chi tiết
LL
10 tháng 5 2017 lúc 0:12

Hằng đẳng thức quen thuộc: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=\frac{a^3+b^3+c^3-3abc}{6}\)

khi đó \(vT=\frac{a^3+b^3+c^3-3abc}{6}+abc=\frac{a^3+b^3+c^3+3abc}{6}\)

Cần chứng minh \(a^3+b^3+c^3+3abc\ge48\)

ta có: \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=216-3\left(6-a\right)\left(6-b\right)\left(6-c\right)\)

\(=216-18\left(ab+bc+ca\right)+3abc\)

do đó \(VT=216-18\left(ab+bc+ca\right)+6abc\)(*)

ta có bất đẳng thức phụ sau : với a,b,c là 3 cạnh của 1 tam giác thì \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

# : cách CM: dùng AM-GM lên google mà surt

ÁP dụng :\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)=\left(6-2a\right)\left(6-2b\right)\left(6-2c\right)\)

\(abc\ge24\left(ab+bc+ca\right)-8abc-216\)\(\Leftrightarrow9abc\ge24\left(ab+bc+ca\right)-216\)

\(\Leftrightarrow6abc\ge16\left(ab+bc+ca\right)-144\)(**)

từ (*) và (**) ta có: \(VT\ge72-2\left(ab+bc+ca\right)\ge72-2.\frac{1}{3}\left(a+b+c\right)^2\)(AM-GM)

\(\Leftrightarrow VT\Rightarrow72-\frac{2}{3}.36=48\)(đpcm)

Dấu = xảy ra khi a=b=c=2

Bình luận (0)
HN
Xem chi tiết
CC
20 tháng 4 2018 lúc 10:43

de sai

Bình luận (0)
H24
27 tháng 8 2018 lúc 16:35

Trả lời:

đề sai

chúc bạn học tốt

Bình luận (0)
CM
Xem chi tiết
NL
17 tháng 4 2022 lúc 12:37

Ta có:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)-\sqrt[3]{abc}.\sqrt[3]{ab.bc.ca}\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\dfrac{1}{3}\left(a+b+c\right).\dfrac{1}{3}\left(ab+bc+ca\right)\)

\(=\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

Do đó:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\dfrac{8}{9}.3.\left(a+b+c\right)\ge\dfrac{8}{3}\sqrt{3\left(ab+bc+ca\right)}=8\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
CM
Xem chi tiết
NT
30 tháng 6 2023 lúc 13:27

a+b>=2căn ab

b+c>=2*căn bc

a+c>=2*căn ac

=>(a+b)(b+c)(a+c)>=2*2*2*căn ab*bc*ac=8

Bình luận (0)
H24
Xem chi tiết
TL
25 tháng 8 2020 lúc 16:41

Dễ dàng dự đoán được dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)Nhận thấy các đại lượng trong căn và mẫu đồng chưa bậc nên suy nghĩ đầu tiên là đồng bậc. Để ý đến giả thiết a+b+c=1 ta thấy \(a^2+abc=a^2\left(a+b+c\right)+abc=a\left(a+b\right)\left(a+c\right)\)

\(c+ab=a\left(a+b+c\right)+ab=\left(a+c\right)\left(b+c\right)\)

Hoàn toàn tương tự ta có \(b^2+abc=b\left(b+a\right)\left(b+c\right);c^2+abc=c\left(c+b\right)\left(c+a\right)\)

\(b+ac=\left(a+b\right)\left(b+c\right);a+bc=\left(a+b\right)\left(b+c\right)\)

Khi đó bất đẳng thức cần chứng minh trở thành

\(\frac{\sqrt{a\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(b+c\right)}+\frac{\sqrt{b\left(b+c\right)\left(b+a\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{\sqrt{c\left(c+a\right)\left(c+b\right)}}{\left(b+a\right)\left(b+c\right)}\le\frac{1}{2\sqrt{abc}}\)

hay \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(c+b\right)}+\frac{b\sqrt{ab\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+b\right)\left(b+c\right)}}{\left(c+b\right)\left(b+a\right)}\le\frac{1}{2\sqrt{abc}}\)

Quan sát bất đẳng thức trên ta liên tưởng đến bất đẳng thức Cauchy, để ý là

\(bc\left(a+b\right)\left(a+c\right)=c\left(a+b\right)\cdot b\left(a+c\right)=b\left(a+b\right)\cdot c\left(a+c\right)\)

Trong 2 cách viết trên ta chọn cách viết thứ nhất vì khi sử dụng bất đẳng thức Cauchy dạng \(2\sqrt{xy}\le x+y\)thì không tạo ra các đại lượng có chứa các bình phương. Khi đó áp dụng bất đẳng thức Cauchy ta được

\(\sqrt{bc\left(a+b\right)\left(a+c\right)}\le\frac{b\left(a+c\right)+c\left(a+b\right)}{2}=\frac{ab+2bc+ca}{2}\)

Áp dụng tương tự ta được

  \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(c+a\right)\left(c+b\right)}+\frac{b\sqrt{ac\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+c\right)\left(b+c\right)}}{\left(b+c\right)\left(b+a\right)}\)\(\le\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\le1\)

hay \(a\left(ab+2bc+ca\right)\left(a+b\right)+b\left(b+c\right)\left(ab+bc+2ca\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Vế trái của bất đẳng thức là bậc bốn còn vế phải là bậc ba nên ta có thể đồng bậc là

\(a\left(ab+2bc+ca\right)+b\left(b+c\right)\left(ab+bc+2ac\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)

\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)\)

Triển khai và thu gọn ta được \(a^3\left(b+c\right)+b^3\left(c+a\right)+c^3\left(a+b\right)+a^2b^2+b^2c^2+c^2a^2+5\left(a^2bc+ab^2c+abc^2\right)\)

\(\le a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)+4\left(a^2bc+ba^2c+abc^2\right)\)

hay \(abc\left(a+b+c\right)\le a^2b^2+b^2c^2+c^2a^2\), đây là một đánh giá đúng

Dấu đẳng thức xảy ra tại \(a=b=c=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa