Cho a,b,c là ba số thực dương thỏa mãn điều kiện ab+bc+ac=3abc. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{bc}{b+c+1}}+\sqrt{\dfrac{ca}{c+a+1}}\ge\sqrt{3}\)
Cho a,b,c là ba số thực dương thỏa mãn điều kiện ab+bc+ac=3abc. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{bc}{b+c+1}}+\sqrt{\dfrac{ca}{c+a+1}}\ge\sqrt{3}\)
#Toán lớp 9
cho a,b,c là các số thực dương thỏa mãn : abc=1
chứng minh: \(\dfrac{1}{ab+a}+\dfrac{1}{bc+b}+\dfrac{1}{ca+c}\ge\dfrac{3}{2}\)
Cho \(P=\dfrac{1}{3+2a+b+ab}+\dfrac{1}{3+2b+c+bc}+\dfrac{1}{3+2c+a+ca}\)
với a, b, c là các số thực dương thỏa mãn điều kiện:
\(a+b+c+ab+bc+ca+abc=0\)
cho a,b,c là các số thực dương thỏa mãn a+b+c+ab+bc+ca=6abc
CMR:\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\ge3\)
CMR với bất kì các số thực dương a,b,c sao cho a+b+c=ab+bc+ac , bất đẳng thức sau đây xảy ra :
\(3+\sqrt[3]{\dfrac{a^3+1}{2}}+\sqrt[3]{\dfrac{b^3+1}{2}}+\sqrt[3]{\dfrac{c^3+1}{2}}\le2\left(a+b+c\right)\)
Cho a,b,c là 3 số thực dương thỏa mãn a+b+c=1.Tìm giá trị lớn nhất của biểu thức P=\(\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\)
Cho a, b, c là các số thực dương đôi một khác nhau thỏa mãn:
\(\dfrac{\sqrt{ab}+1}{\sqrt{a}}=\dfrac{\sqrt{bc}+1}{\sqrt{b}}=\dfrac{\sqrt{ca}+1}{\sqrt{c}}\)
Chứng minh rằng abc = 1
cho các số thực dương a,b,c thỏa mãn ab+bc+ca=3.
chứng minh: M=\(\sqrt{\dfrac{bc}{a^2+3}}+\sqrt{\dfrac{ac}{b^2+3}}\sqrt{\dfrac{ab}{c^2+3}}\le\dfrac{3}{2}\)