TM

Những câu hỏi liên quan
TM
Xem chi tiết
H24
19 tháng 8 2021 lúc 16:30

(4x - 1)2

Bình luận (0)
H24
19 tháng 8 2021 lúc 16:30

\(16x^2-8x+1\\ =\left(16x^2-4x\right)-\left(4x-1\right)\\ =4x\left(4x-1\right)-\left(4x-1\right)\\ =\left(4x-1\right)^2\)

Bình luận (0)
NT
19 tháng 8 2021 lúc 23:21

\(16x^2-8x+1=\left(4x-1\right)^2\)

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 1 2017 lúc 12:22

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
24 tháng 11 2019 lúc 12:11

Ta có

B   =   4   –   16 x 2   –   8 x     =   5   –   ( 16 x 2   +   8 x   +   1 )   =   5   –   [ ( 4 x ) 2   +   2 . 4 x . 1   +   1 2 ]     =   5   –   ( 4 x   +   1 ) 2

 

Nhận thấy 4 x   +   1 2 ≥ 0; Ɐx

=> 5 – 4 x   +   1 2 ≤ 5

Dấu “=” xảy ra khi 4 x   +   1 2 = 0 ó x = - 1 4

Đáp án cần chọn là: A

Bình luận (0)
TL
Xem chi tiết
NM
23 tháng 10 2021 lúc 9:48

\(a,\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-2\right)^3=0\Leftrightarrow x-2=0\Leftrightarrow x=2\\ c,\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{7}\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
H24
13 tháng 6 2021 lúc 21:12

`A=16x^2+8x+5`

`=16x^2+8x+1+4`

`=(4x+1)^2+4>=4`

Dấu "=" xảy ra khi `4x+1=0<=>x=-1/4`

`B=x^2-x`

`=x^2-x+1/4-1/4`

`=(x-1/2)^2-1/4>=-1/4`

Dấu "=" xảy ra khi `x=1/2`

`C=a^2-2a+b^2+6b+2021`

`=a^2-2a+1+b^2+6b+9+2011`

`=(a-1)^2+(b+3)^2+2011>=2011`

Dấu "=" xảy ra khi \(\begin{cases}a=1\\b=-3\\\end{cases}\)

Bình luận (2)
NN
Xem chi tiết
NT
16 tháng 7 2023 lúc 14:52

\(C=16x^2-8x+2024\)

\(\Rightarrow C=16x^2-8x+1+2023\)

\(\Rightarrow C=\left(4x-1\right)^2+2023\ge2023\left(\left(4x-1\right)^2\ge0\right)\)

\(\Rightarrow Min\left(C\right)=2023\)

\(D=-25x^2+50x-2023\)

\(\Rightarrow D=-\left(25x^2-50x+25\right)-1998\)

\(\Rightarrow D=-\left(5x-5\right)^2-1998\le1998\left(-\left(5x-5\right)^2\le0\right)\)

\(\Rightarrow Max\left(D\right)=1998\)

\(B=-x^2+20x+100=-\left(x^2-20x+100\right)+200=-\left(x-10\right)^2+200\le200\left(-\left(x-10\right)^2\le0\right)\)

\(\Rightarrow Max\left(B\right)=200\)

\(E=\left(2x-1\right)^2-\left(3x+2\right)\left(x-5\right)\)

\(\Rightarrow E=4x^2-4x+1-\left(3x^2-13x-10\right)\)

\(\Rightarrow E=4x^2-4x+1-3x^2+13x+10\)

\(\Rightarrow E=x^2+9x+11=x^2+9x+\dfrac{81}{4}-\dfrac{81}{4}+11\)

\(\Rightarrow E=\left(x+\dfrac{9}{2}\right)^2-\dfrac{37}{4}\ge-\dfrac{37}{4}\left(\left(x+\dfrac{9}{2}\right)^2\ge0\right)\)

\(\Rightarrow Min\left(E\right)=-\dfrac{37}{4}\)

\(F=\left(3x-5\right)^2-\left(3x+2\right)\left(4x-1\right)\)

\(\Rightarrow F=9x^2-30x+25-\left(12x^2+3x-2\right)\)

\(\Rightarrow F=-3x^2-33x+27=-3\left(x^2-10x+9\right)\)

\(\Rightarrow F=-3\left(x^2-10x+25\right)+48=-3\left(x-5\right)^2+48\le48\left(-3\left(x-5\right)^2\le0\right)\)

\(\Rightarrow Max\left(F\right)=48\)

Bình luận (0)
TA
Xem chi tiết
LH
22 tháng 8 2019 lúc 22:27

a, \(x^4-4x^3-6x^2-4x+1=0\)(*)

<=> \(x^4+4x^2+1-4x^3-4x+2x^2-12x^2=0\)

<=> \(\left(x^2-2x+1\right)^2=12x^2\)

<=>\(\left(x-1\right)^4=12x^2\) <=> \(\left[{}\begin{matrix}\left(x-1\right)^2=\sqrt{12}x\\\left(x-1\right)^2=-\sqrt{12}x\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x^2-2x+1-\sqrt{12}x=0\left(1\right)\\x^2-2x+1+\sqrt{12}x=0\left(2\right)\end{matrix}\right.\)

Giải (1) có: \(x^2-2x+1-\sqrt{12}x=0\)

<=> \(x^2-2x\left(1+\sqrt{3}\right)+\left(1+\sqrt{3}\right)^2-\left(1+\sqrt{3}\right)^2+1=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2-3-2\sqrt{3}=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2=3+2\sqrt{3}\) <=> \(\left[{}\begin{matrix}x-1-\sqrt{3}=\sqrt{3+2\sqrt{3}}\\x-1-\sqrt{3}=-\sqrt{3+2\sqrt{3}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(ktm\right)\\x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(tm\right)\end{matrix}\right.\)

=> \(x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

Giải (2) có: \(x^2-2x+1+\sqrt{12}x=0\)

<=> \(x^2-2x\left(1-\sqrt{3}\right)+\left(1-\sqrt{3}\right)^2-\left(1-\sqrt{3}\right)^2+1=0\)

<=> \(\left(x+\sqrt{3}-1\right)^2=3-2\sqrt{3}\) .Có VP<0 => PT (2) vô nghiệm

Vậy pt (*) có nghiệm x=\(-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

Bình luận (0)
DV
Xem chi tiết
NM
17 tháng 10 2021 lúc 14:58

\(a,=\left(5x-1\right)^2\\ b,=\left(x+4\right)^2\\ c,=\left(4x+3y\right)^2\\ d,=\left(\dfrac{x}{4}+2y\right)^2\)

Bình luận (0)