Những câu hỏi liên quan
PB
Xem chi tiết
CT
25 tháng 11 2018 lúc 2:56

a) Thay x = 2 vào bất phương trình ta được: x2 = 22 = 4 > 0

Vậy x = 2 là một nghiệm của bất phương trình x2 > 0.

Thay x = -3 vào bất phương trình ta được x2 = (-3)2 = 9 > 0

Vậy x = -3 là một nghiệm của bất phương trình x2 > 0.

b) Với x = 0 ta có x2 = 02 = 0

⇒ x = 0 không phải nghiệm của bất phương trình x2 > 0.

Vậy không phải mọi giá trị của ẩn x đều là nghiệm của bất phương trình đã cho.

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 1 2018 lúc 13:11

Thay giá trị của x vào từng vế của bất phương trình:

x = -5 vế trái: 2.(-5) + 1 = -10 + 1 = -9

vế phải: 2.[(-5) + 1] = 2.(-4) = -8

Vì -9 < -8 nên x = -5 không phải là nghiệm của bất phương trình.

x = 0 vế trái: 2.0 + 1 = 1

vế phải: 2.(0 + 1) = 2

Vì 1 < 2 nên x = 0 không phải là nghiệm của bất phương trình.

x = -8 vế trái: 2.(-8) + 1 = -16 + 1 = -15

vế phải: 2.[(-8) + 1] = 2.(-7) = -14

Vì -15 < -14 nên x = -8 không là nghiệm của bất phương trình.

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 2 2018 lúc 17:21

Làm hai vế của bất phương trình đầu vô nghĩa nên x = -7 không là nghiệm của bất phương trình đó. Mặt khác, x = -7 thỏa mãn bất phương trình sau nên x = -7 là nghiệm của bất phương trình này.

    Nhận xét: Phép giản ước số hạng  - 1 x + 7  ở hai vế của bất phương trình đầu làm mở rộng tập xác định của bất phương trình đó, vì vậy có thể dẫn đến nghiệm ngoại lai.

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 2 2019 lúc 12:36

a) Ta có: a = 2; b = -1; c = -7

Δ = b 2  - 4ac = - 1 2  - 4.2.(-7) = 57 > 0

⇒ Phương trình có 2 nghiệm phân biệt x 1 , x 2

Bình luận (0)
TP
Xem chi tiết
NT
1 tháng 3 2022 lúc 20:18

a: Khi m=1 thì phương trình sẽ là \(x^2-3x-5=0\)

\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-5\right)=9+20=29\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{29}}{2}\\x_2=\dfrac{3+\sqrt{29}}{2}\end{matrix}\right.\)

b: \(\text{Δ}=\left(2m+1\right)^2-4\left(-m-4\right)\)

\(=4m^2+4m+1+4m+16\)

\(=4m^2+8m+17\)

\(=4m^2+4m+4+13\)

\(=\left(2m+2\right)^2+13>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Bình luận (0)
NT
1 tháng 3 2022 lúc 20:19

a, Thay m =1 ta đc 

\(x^2-3x-5=0\)

\(\Delta=9-4\left(-5\right)=9+20=29>0\)

Vậy pt luôn có 2 nghiệm pb 

\(x=\dfrac{3\pm\sqrt{29}}{2}\)

b, Ta có \(\Delta=\left(2m+1\right)^2-4\left(-m-4\right)=4m^2+4m+1+4m+16\)

\(=4m^2+8m+16+1=4\left(m^2+2m+4\right)+1=4\left(m+1\right)^2+13>0\)

vậy pt luôn có 2 nghiệm pb 

Bình luận (2)
N2
1 tháng 3 2022 lúc 20:20

a, Thay m=1 vào pt ta có:
\(x^2-\left(2.1+1\right)x-1-4=0\\ \Leftrightarrow x^2+3x-5=0\)

\(\Delta=3^2-4.1.\left(-5\right)=9+20=29\)

\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{29}}{2}\\x_2=\dfrac{-3+\sqrt{29}}{2}\end{matrix}\right.\)

b, Ta có: 

\(\Delta=\left[-\left(2m+1\right)\right]^2-4.1.\left(-m-4\right)\\=\left(2m+1\right)^2+4\left(m+4\right)\\ =4m^2+4m+1+4m+16\\ =4m^2+8m+17\\ =4\left(m^2+2m+1\right)+13\\ =4\left(m+1\right)^2+13>0 \)

Vậy pt luôn có 2 nghiệm phân biệt

Bình luận (0)
PA
Xem chi tiết
H24
Xem chi tiết
H24
16 tháng 3 2021 lúc 15:01

undefined

Bình luận (0)
HH
Xem chi tiết
TL
14 tháng 4 2020 lúc 16:42

a) Ta có x2 >0 với mọi x thuộc Z

=> x=2 và x=-3 là nghiệm của BĐT đã cho

b) Vì x2 >0 với mọi giá trị x 

=> mọi giá trị ẩn x đều là nghiệm của bpt đã cho

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
6 tháng 12 2018 lúc 5:03

Bình luận (0)