Những câu hỏi liên quan
NH
Xem chi tiết
CD
7 tháng 3 2019 lúc 13:33

\(\sqrt{x+2}+x^3=y^3+\sqrt{y+2}\)

nếu x>y =>vt>vp

nếu x<y => vt<vp

nếu x=y => VT=VP

=> x=y

ta có\(M=-x^2+2x+2015=-\left(x-1\right)^2+2016\)

=>M max=2016<=>x=y=1

Bình luận (0)
TB
Xem chi tiết
DQ
10 tháng 11 2020 lúc 5:00

Bài 1: 

ĐK: \(x,y\ge-2\)

Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)

=> x-y=0=>x=y

Thay y=x vào B ta được:  B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)

Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)

Vậy Min B =9 khi x=y=-1

Bình luận (0)
 Khách vãng lai đã xóa
PL
9 tháng 8 2020 lúc 12:46

10x100=

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
CA
Xem chi tiết
NT
10 tháng 1 2018 lúc 21:36

bài của bọn mk như này cx khá giống của bạn nên bạn có thể tham khảo :

Cho x,y thỏa √x+2+y3=√y+2+y3

Tìm gtnn của B= x2 +2xy-2y2 +2y+10

GIẢI

√x+2+y3=√y+2+y3 => x=y

ta có : B= x2 + 2xy - 2y2 + 2y + 10 <=> B=x2 +2x2 - 2x2 + 2x + 10

B = x2 + 2x +10

B = (x+1)2 + 9 >= 9 vì (x+1)2 >= 0 với ∀ x

=> min B = 9 <=> x=y=1

Bình luận (0)
NN
Xem chi tiết
DL
3 tháng 1 2018 lúc 22:17

dùng hệ số bất định ấy ,lười lắm

Bình luận (0)
NT
4 tháng 1 2018 lúc 23:05

p. tích thành tổng 2 bình phương rồi mincopxki

Bình luận (0)
NP
6 tháng 9 2021 lúc 20:34

Dễ chứng minh được \(2x^2+3xy+2y^2\ge\frac{7}{4}\left(x+y\right)^2\)

                       \(\Leftrightarrow\left(\frac{1}{2}x-\frac{1}{2}y\right)^2\ge0\left(true\right)\)

Một cách tương tự :

\(2y^2+3yz+2z^2\ge\frac{7}{4}\left(y+z\right)^2\)

\(2z^2+3xz+2x^2\ge\frac{7}{4}\left(z+x\right)^2\)

\(\Rightarrow A=\sqrt{2x^2+3xy+2y^2}+\sqrt{2y^2+3yz+2z^2}+\sqrt{2z^2+3xz+2x^2}\)

\(\ge\sqrt{\frac{7}{4}\left(x+y\right)^2}+\sqrt{\frac{7}{4}\left(y+z\right)^2}+\sqrt{\frac{7}{4}\left(z+x\right)^2}\)

\(=\frac{\sqrt{7}}{2}\left(x+y+y+z+z+x\right)=\frac{\sqrt{7}}{2}.6=3\sqrt{7}\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
NL
19 tháng 3 2019 lúc 20:56

Nếu bạn đã học phương trình đặc trưng thì khá dễ, chưa học thì chúng ta đành liên hợp:

ĐKXĐ: \(x;y\ge-2\)

\(\sqrt{x+2}-\sqrt{y+2}+x^3-y^3=0\)

\(\Leftrightarrow\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}+\left(x-y\right)\left(\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[\frac{1}{\sqrt{x+2}+\sqrt{y+2}}+\left(x+y\right)^2+\frac{3y^2}{4}\right]=0\)

\(\Leftrightarrow x-y=0\) (ngoặc phía sau luôn dương)

\(\Rightarrow x=y\)

Vậy \(A=x^2+2x^2-2x^2+2x+10=\left(x+1\right)^2+9\ge9\)

\(\Rightarrow A_{min}=9\) khi \(x=y=-1\)

Bình luận (3)
H24
Xem chi tiết
NL
25 tháng 12 2020 lúc 23:06

Bạn coi lại đề, nhìn 2 vế của điều kiên đều là \(\sqrt{x+2}\) có vẻ sai sai rồi đó

Bình luận (2)
TN
Xem chi tiết
H24
30 tháng 5 2017 lúc 14:07

\(\sqrt{x+2}\) +y3=\(\sqrt{y+2}\) +y3

\(\Rightarrow\) x=y

ta co :B=x2+2xy-2y2+2y+10 

\(\Leftrightarrow\)B=x2+2x2-2x2+2x+10

B=x2+2x+10

B=(x+1)2+9\(\ge\) 9 vì (x+1)2 \(\ge\)  0 vs \(\forall\) x

\(\Rightarrow\) minB=9 \(\Leftrightarrow\) x=y=-1

Bình luận (0)
H24
Xem chi tiết