Những câu hỏi liên quan
H24
Xem chi tiết
PC
7 tháng 1 2023 lúc 21:38

Ta có tính chất : 

\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\rightarrow A=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|\ge\left|x+5+x+2+x-7+x-8\right|\)

​​\(\rightarrow A\ge\left|4x-8\right|\)

Vì \(\left|4x-8\right|\ge0\forall x\in R\) nên :

\(\rightarrow A\ge0\forall x\in R\)

Dấu "= " xảy ra khi : 

\(\left|4x-8\right|=0\) \(\Leftrightarrow4x-8=0\) 

                     \(\Leftrightarrow x=2\)

Vậy \(A_{min}=0\Leftrightarrow x=2\)

Bình luận (0)
MN
Xem chi tiết
NL
25 tháng 8 2021 lúc 15:08

Đặt \(x+3=t\ne0\Rightarrow x=t-3\)

\(A=\dfrac{\left(t+2\right)\left(t-4\right)}{t^2}=\dfrac{t^2-2t-8}{t^2}=-\dfrac{8}{t^2}-\dfrac{2}{t}+1=-8\left(\dfrac{1}{t}+\dfrac{1}{8}\right)^2+\dfrac{9}{8}\le\dfrac{9}{8}\)

\(A_{max}=\dfrac{9}{8}\) khi \(t=-8\) hay \(x=-11\)

Bình luận (0)
TN
Xem chi tiết
TH
6 tháng 1 2021 lúc 20:59

B=\(4x^2-4x+1+x^2+4x+4=5x^2+5\)

                                                  \(=5\left(x^2+1\right)\)

\(x^2+1\ge1\forall x\)

\(\Leftrightarrow B\ge5\forall x\)

dấu'=' xảy ra \(\Leftrightarrow x^2+1=0\Leftrightarrow x=0\)

vậy B đạt GTNN =5 khi x=0

Bình luận (0)
NT
6 tháng 1 2021 lúc 23:56

Bài 2: 

a) Ta có: \(A=x^2-3x+5\)

\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)

Ta có: \(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\dfrac{3}{2}=0\)

hay \(x=\dfrac{3}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-3x+5\) là \(\dfrac{11}{4}\) khi \(x=\dfrac{3}{2}\)

Bình luận (0)
NM
Xem chi tiết
HH
8 tháng 4 2018 lúc 22:19

Ta có \(\left|2014-x\right|\ge0\)với mọi giá trị của x

\(\left|2015-x\right|\ge0\)với mọi giá trị của x

\(\left|2016-x\right|\ge0\)với mọi giá trị của x

=> \(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\ge0\)với mọi giá trị x

=> GTNN của A là 0.

Bình luận (0)
HL
8 tháng 4 2018 lúc 22:20

Có I 2014 - x I + I 2016 - x I = I x - 2014 I + I 2016 - x I \(\ge\)I x - 2014 + 2016 - x I = 2

Dấu = xảy ra \(\Leftrightarrow\)(x - 2014)(2016 - x)\(\ge\)0

TH1: x- 2014\(\ge\)0 và 2016 - x\(\ge\)0

=> x\(\ge\) 2014 và x\(\le\)2016 ( chọn )

TH2: Làm tương tự => loại

Có I 2015 -x I \(\ge\)

Dấu = xảy ra khi x = 2015

Vậy A min = 2 khi x = 2015

Bình luận (0)
NL
Xem chi tiết
NT
25 tháng 5 2022 lúc 14:09

\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\ge\dfrac{5}{4}\)

nên \(\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\right]^2\ge\dfrac{25}{16}\)

Dấu '=' xảy ra khi x=-1/2

Bình luận (0)
NV
25 tháng 5 2022 lúc 14:09

Có \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\ge\dfrac{5}{4}\forall x\)

\(A=\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\right]^2\ge\left(\dfrac{5}{4}\right)^2=\dfrac{25}{16}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy min \(A=\dfrac{25}{16}\Leftrightarrow x=\dfrac{-1}{2}\)

Bình luận (0)
MT
Xem chi tiết
DT
10 tháng 12 2018 lúc 22:08

có \(P=|2013-x|+|2014-x|\)

          =\(|2013-x|+|x-2014|\)

\(\Rightarrow P\ge|2013-x+x-2014|=|-1|=1\)

\(\Rightarrow MinP=1\Leftrightarrow Dấu=xảyra\)\(\Leftrightarrow\left(2013-x\right)\left(x-2014\right)\ge0\)

\(\Leftrightarrow2013\le x\le2014\)

                                        kb với mk nha!!!!!!!!    ^_^   ^_^

Bình luận (0)
KS
10 tháng 12 2018 lúc 22:14

\(P=\left|2013-x\right|+\left|2014-x\right|\)

\(P=\left|x-2013\right|+\left|2014-x\right|\)

Ta có: \(\hept{\begin{cases}\left|x-2013\right|\ge x-2013\\\left|2014-x\right|\ge2014-x\end{cases}}\Rightarrow P\ge x-2013+2014-x=1\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-2013\right|=x-2013\\\left|2014-x\right|=2014-x\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2013\ge0\\2014-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2013\\x\le2014\end{cases}\Leftrightarrow}2013\le x\le2014}\)

Vậy \(P_{min}=1\Leftrightarrow2013\le x\le2014\)

Bình luận (0)
MT
Xem chi tiết
LB
23 tháng 12 2018 lúc 22:20

Tìm GTNN của biểu thức:

P=|2013x|+|2014x|

P=|x-2013|+|2014−x|

ÁP DỤNG: |A|+|B| >=|A+B|

=> |x-2013|+|2014−x|>=|x-2013+2014-x|

=> |x-2013|+|2014−x|>=1

Vậy P >= 1

Tự xét dấu = xảy ra

Vậy P min =1

Bình luận (0)
SH
24 tháng 12 2018 lúc 16:21

Ta có: \(P=|2013-x|+|2014-x|=|2013-x|+|x-2014|\ge|2013-x+x-2014|=|-1|=1\)

\(\Rightarrow minP=1\Leftrightarrow\left(2013-x\right)\left(x-2014\right)\ge0\)

\(TH1:\hept{\begin{cases}2013-x\le0\\x-2014\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge2013\\x\le2014\end{cases}}\Rightarrow2013\le x\le2014\)

\(TH2:\hept{\begin{cases}2013-x>0\\x-2014>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 2013\\x>2014\end{cases}}\Rightarrow\)vô lý

Vậy \(minP=1\Leftrightarrow2013\le x\le2014\)

( min là GTNN )

Bình luận (0)
TG
Xem chi tiết
VT
14 tháng 1 2023 lúc 22:59

3 câu này bạn áp dụng cái này nhé.

`a^2 >=0 forall a`.

`|a| >=0 forall a`.

`1/a` xác định `<=> a ne 0`.

Bình luận (0)
NT
14 tháng 1 2023 lúc 23:01

a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y

Dấu = xảy ra khi x=-30 và y=4

b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y

Dấu = xảy ra khi x=-1/3 và y=1/6

c: -x^2-x+1=-(x^2+x-1)

=-(x^2+x+1/4-5/4)

=-(x+1/2)^2+5/4<=5/4

=>R>=3:5/4=12/5

Dấu = xảy ra khi x=-1/2

Bình luận (0)
H24
Xem chi tiết