BT1: Tính nhanh
5) \(B=1\dfrac{1}{2}.1\dfrac{1}{3}.1\dfrac{1}{4}....1\dfrac{1}{99}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
BT1: Tính nhanh:
2) ( \(\dfrac{98}{99}+\dfrac{89}{100}+\dfrac{100}{101}\)) . ( \(\dfrac{1}{12}-\dfrac{1}{3}+\dfrac{1}{4}\))
\(\left(\dfrac{98}{99}+\dfrac{89}{100}+\dfrac{100}{101}\right)\left(\dfrac{1}{12}-\dfrac{1}{3}+\dfrac{1}{4}\right)\\ =\left(\dfrac{98}{99}+\dfrac{89}{100}+\dfrac{100}{101}\right)\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)\\ =\left(\dfrac{98}{99}+\dfrac{89}{100}+\dfrac{100}{101}\right).0\\ =0\)
BT1: Tính nhanh:
3) ( \(\dfrac{98}{99}-\dfrac{98}{97}+\dfrac{1}{97.98}\) ) . ( \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}\))
\(=\left(1-\dfrac{1}{99}-1-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{98}\right)\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\right)\)
\(=\left(-\dfrac{1}{99}-\dfrac{1}{98}\right)\cdot\dfrac{3}{10}=\dfrac{-197\cdot3}{9702\cdot10}=\dfrac{-197}{32340}\)
BT1: Tính nhanh
1) \(\left(\dfrac{-4}{9}+\dfrac{3}{7}\right):1\dfrac{1}{15}+\left(\dfrac{4}{7}-\dfrac{5}{9}\right):1\dfrac{1}{15}\)
2) \(3\dfrac{2}{9}.15\dfrac{4}{7}-3\dfrac{2}{9}.8\dfrac{1}{7}+3\dfrac{2}{9}.\dfrac{15}{7}-3\dfrac{2}{9}.\dfrac{1}{7}\)
1: \(=\dfrac{16}{15}\left(-\dfrac{4}{9}+\dfrac{3}{7}\right)+\dfrac{16}{15}\left(\dfrac{4}{7}-\dfrac{5}{9}\right)\)
\(=\dfrac{16}{15}\left(-\dfrac{4}{9}+\dfrac{3}{7}+\dfrac{4}{7}-\dfrac{5}{9}\right)=0\)
2: \(=\dfrac{29}{9}\left(15+\dfrac{4}{7}-8-\dfrac{1}{7}+\dfrac{15}{7}-\dfrac{1}{7}\right)\)
\(=\dfrac{20}{9}\cdot\left(7\cdot\dfrac{18}{7}\right)=\dfrac{20}{9}\cdot18=40\)
BT1: Tính nhanh:
3) \(\left(\dfrac{1}{3}-\dfrac{1}{4}\right)^2+\left(\dfrac{1}{2}-\dfrac{1}{6}\right)^2+1\dfrac{1}{3}\)
\(=\left(\dfrac{4}{12}-\dfrac{3}{12}\right)^2+\left(\dfrac{3}{6}-\dfrac{1}{6}\right)^2+\dfrac{4}{3}\)
\(=\dfrac{1}{144}+\dfrac{1}{9}+\dfrac{4}{3}=\dfrac{209}{144}\)
BT1: Tính nhanh
3) \(\dfrac{1}{2}-\dfrac{3}{2}.\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{-3}{-2^3}\right)\)
4) \(\dfrac{1}{12}.\dfrac{37}{39}+\dfrac{1}{12}.\dfrac{2}{39}+\dfrac{1}{4}\)
\(\dfrac{1}{12}\). \(\dfrac{37}{39}+\dfrac{1}{12}.\dfrac{2}{39}+\dfrac{1}{4}\)
=\(\dfrac{1}{12}.\left(\dfrac{37}{39}+\dfrac{2}{39}\right)+\dfrac{1}{4}\)
=\(\dfrac{1}{12}.1+\dfrac{1}{4}\)
=\(\dfrac{13}{12}+\dfrac{1}{4}\)
=\(\dfrac{16}{12}\)
Tính giá trị biểu thức A , biết rằng A = M : N
Mà M = \(\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
N = \(\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
Ta có: \(M=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(1+\dfrac{2}{98}\right)+\left(1+\dfrac{3}{97}\right)+\left(1+\dfrac{4}{96}\right)+...+\left(1+\dfrac{98}{2}\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\dfrac{100}{99}+\dfrac{100}{98}+\dfrac{100}{97}+...+\dfrac{100}{1}+\dfrac{100}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
=100
Ta có: \(N=\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
\(=\dfrac{\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{90}{98}\right)+\left(1-\dfrac{91}{99}\right)+\left(1-\dfrac{92}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{99}+\dfrac{8}{100}}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{8}{\dfrac{1}{5}}=40\)
\(\Leftrightarrow\dfrac{M}{N}=\dfrac{100}{40}=\dfrac{5}{2}\)
BT1: Tính
4) \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}.\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{264}}{\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{264}}+\dfrac{5}{8}\)
\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2.\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}.\dfrac{3.\left(\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{264}\right)}{\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{264}}\)
\(=\dfrac{1}{2}.3=\dfrac{3}{2}\)
Giúp mk với
Câu 1:
Cho A = \(\dfrac{1}{\dfrac{99}{\dfrac{1}{2}+}}+\dfrac{2}{\dfrac{98}{\dfrac{1}{3}+}}+\dfrac{3}{\dfrac{97}{\dfrac{1}{4}+....}}+...+\dfrac{99}{\dfrac{1}{\dfrac{1}{100}}}\).
B =\(\dfrac{92}{\dfrac{1}{45}+}-\dfrac{1}{\dfrac{9}{\dfrac{1}{50}+}}-\dfrac{2}{\dfrac{10}{\dfrac{1}{55}+}}-\dfrac{3}{\dfrac{11}{\dfrac{1}{60}+....}}-...\dfrac{92}{\dfrac{100}{\dfrac{1}{500}}}\). Tính \(\dfrac{A}{B}\)
CMR:a)\(\dfrac{1}{3}< \dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+....+\dfrac{1}{30}< \dfrac{5}{2}\)
b)\(\dfrac{1}{5}< \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+.....-\dfrac{1}{99}< \dfrac{2}{5}\)
c)\(\dfrac{1}{15}< \dfrac{1}{2}.\dfrac{3}{4}......\dfrac{99}{100}< \dfrac{1}{10}\)
T làm biếng lắm; làm C thôi
\(A=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\\ \Rightarrow A< \dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{100}{101}\\ \Rightarrow A^2< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{100}{101}\right)\\ =\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}...\dfrac{99}{100}.\dfrac{100}{101}\\ =\dfrac{1}{101}< \dfrac{1}{100}\\ \Rightarrow A< \dfrac{1}{10}\)
Làm tương tự ta được A > 1/15
câu a
\(A=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{30}>\dfrac{20}{30}=\dfrac{2}{3}>\dfrac{1}{3}\)
\(A=\left(\dfrac{1}{11}+..+\dfrac{1}{15}\right)+\left(\dfrac{1}{16}+...+\dfrac{1}{30}\right)< 5.\dfrac{1}{10}+25.\dfrac{1}{15}=\dfrac{1}{2}+\dfrac{5}{3}=\dfrac{8}{6}=\dfrac{4}{3}< \dfrac{5}{2}\)