Những câu hỏi liên quan
YA
Xem chi tiết
NN
Xem chi tiết
BL
23 tháng 6 2021 lúc 22:43

\(2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)\)

\(=\left(1-1\right)+\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{2021}\right)\)

\(=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\)

Bình luận (0)

Giải:

\(2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\) 

Ta có:

\(2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)\) 

\(=\left(1-1\right)+\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{2021}\right)\) 

\(=0+\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{2020}{2021}\) 

\(=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{2020}{2021}\) 

Mà \(\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{2020}{2021}=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\) 

\(\Rightarrow2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\left(đpcm\right)\)

Bình luận (0)
H24
Xem chi tiết
LF
21 tháng 5 2018 lúc 17:48

Áp dụng BĐT AM-GM ta có:

\(\dfrac{abc}{a^2+bc}\le\dfrac{abc}{2a\sqrt{bc}}=\dfrac{\sqrt{bc}}{2}\le\dfrac{b+c}{4}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(abc.VT\le\dfrac{2\left(a+b+c\right)}{4}=1\Leftrightarrow VT\le\dfrac{1}{abc}=VP\)

Dấu "="\(\Leftrightarrow a=b=c=\dfrac{2}{3}\)

Bình luận (0)
TV
Xem chi tiết
TM
12 tháng 5 2017 lúc 20:03

thì giá trị biểu thức làm sao?

Bình luận (1)
ND
14 tháng 12 2017 lúc 18:13

ddd

Bình luận (0)
HN
Xem chi tiết
HD
8 tháng 3 2017 lúc 17:16

có bị sai đề không đấy bạn

Bình luận (0)
HD
8 tháng 3 2017 lúc 17:17

CMR A> 1/9 thì mới làm được chứ

Bình luận (1)
NN
Xem chi tiết
JB
6 tháng 5 2017 lúc 21:19

tự xử đi

Bình luận (4)
XT
6 tháng 5 2017 lúc 22:07

a)\(\left(\dfrac{1}{2}-1\right):\left(\dfrac{1}{3}-1\right):...:\left(\dfrac{1}{50}-1\right)=-\dfrac{1}{2}:\left(-\dfrac{2}{3}\right):\left(-\dfrac{3}{4}\right)...:\left(-\dfrac{49}{50}\right)=-\dfrac{1}{2}\cdot\left(-\dfrac{3}{2}\right)\cdot\left(-\dfrac{4}{3}\right)...\left(-\dfrac{50}{49}\right)=-\dfrac{1\cdot3\cdot4...50}{2\cdot3\cdot...\cdot49}=-\dfrac{50}{2}=-25\)

b)Sai đề bạn xem lại và đăng lại mình giải cho

Bình luận (3)
H3
Xem chi tiết
NH
Xem chi tiết
LP
18 tháng 12 2023 lúc 21:37

Trước tiên, ta chứng minh \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\) (*)

(*) \(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\), luôn đúng.

Vậy (*) được chứng minh. Dấu "=" xảy ra \(\Leftrightarrow a=b\) 

\(\Rightarrow VT=a+b+\dfrac{1}{a}+\dfrac{1}{b}\ge a+b+\dfrac{4}{a+b}\)

Đặt \(a+b=t\left(0< t\le\dfrac{1}{2}\right)\)thì

\(VT\ge t+\dfrac{4}{t}\) \(=t+\dfrac{1}{4t}+\dfrac{15}{4t}\)  (1)

Bây giờ ta sẽ chứng minh \(a+b\ge2\sqrt{ab}\) với \(a,b>0\) (**)

(**) \(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}\right)^2-2\sqrt{a}\sqrt{b}+\left(\sqrt{b}\right)^2\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)

Vậy (**) được chứng minh. Dấu "=" xảy ra \(\Leftrightarrow a=b\)

Do đó từ (1) \(\Rightarrow VT\ge\left(t+\dfrac{1}{4t}\right)+\dfrac{15}{4t}\) 

\(\ge2\sqrt{t.\dfrac{1}{4}t}+\dfrac{15}{4.\dfrac{1}{2}}\) (do \(0< t\le\dfrac{1}{2}\))

\(=\dfrac{17}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}t=a+b=\dfrac{1}{2}\\a=b\end{matrix}\right.\Leftrightarrow a=b=\dfrac{1}{4}\)

Ta có đpcm.

Bình luận (0)
H24
Xem chi tiết