Ôn tập toán 6

NN

Tính:

\(\left(\dfrac{1}{2}-1\right):\left(\dfrac{1}{3}-1\right):\left(\dfrac{1}{4}-1\right):\) ... : \(\left(\dfrac{1}{50}-1\right)\)

Chứng minh rằng:

\(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{50}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}+\dfrac{1}{102}\right)=\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}\)

JB
6 tháng 5 2017 lúc 21:19

tự xử đi

Bình luận (4)
XT
6 tháng 5 2017 lúc 22:07

a)\(\left(\dfrac{1}{2}-1\right):\left(\dfrac{1}{3}-1\right):...:\left(\dfrac{1}{50}-1\right)=-\dfrac{1}{2}:\left(-\dfrac{2}{3}\right):\left(-\dfrac{3}{4}\right)...:\left(-\dfrac{49}{50}\right)=-\dfrac{1}{2}\cdot\left(-\dfrac{3}{2}\right)\cdot\left(-\dfrac{4}{3}\right)...\left(-\dfrac{50}{49}\right)=-\dfrac{1\cdot3\cdot4...50}{2\cdot3\cdot...\cdot49}=-\dfrac{50}{2}=-25\)

b)Sai đề bạn xem lại và đăng lại mình giải cho

Bình luận (3)

Các câu hỏi tương tự
PU
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
KL
Xem chi tiết
WT
Xem chi tiết
NN
Xem chi tiết
PH
Xem chi tiết
KL
Xem chi tiết
TL
Xem chi tiết