Cho đường tròn (C) : \(x^2+y^2-6x+2y+6=0\) và điểm \(A\left(1;3\right)\)
a) Chứng tỏ rằng điểm A nằm ngoài đường tròn (C)
b) Lập phương trình tiếp tuyến với (C) xuất phát từ điểm A
cho đường tròn c có pt x^2+y^2-6x+2y+6=0 và điểm A (1;-1) B (1;3) a, cm điểm A thuộc đường tròn và B nằm ngoài đường tròn
PT đường tròn (x - 3)2 + (y + 1)2 = 4
Vậy đường tròn (C) có tâm I (3 ; -1) và bán kính bằng 2
\(\overrightarrow{IA}=\left(-2;0\right)\)⇒ IA = 2 ⇒ A thuộc đường tròn
\(\overrightarrow{IB}=\left(-2;4\right)\) ⇒ IB > 2 ⇒ B nằm ngoài đường tròn
CHI THAY cac toa do diem vao la xong
1. Cho đường tròn (c) : \(x^2+y^2+6x-2y=0\) và đường thẳng d : \(x-3y-4=0\)
Tính tiếp tuyến của (C) song song với (d)
2. Tìm giá trị của m để đường thẳng \(\Delta:3x+4y+3=0\) tiếp xúc với (C) : \(\left(x-m\right)^2+y^2=9\)
3. Xác đinh m để \(\left(C_m\right):x^2+y^2-4x+2\left(m+1\right)y+3m+7=0\) là phương trình của một đường tròn
1: x^2+y^2+6x-2y=0
=>x^2+6x+9+y^2-2y+1=10
=>(x+3)^2+(y-1)^2=10
=>R=căn 10; I(-3;1)
Vì (d1)//(d) nên (d1): x-3y+c=0
Theo đề, ta có: d(I;(d1))=căn 10
=>\(\dfrac{\left|-3\cdot1+1\cdot\left(-3\right)+c\right|}{\sqrt{1^2+\left(-3\right)^2}}=\sqrt{10}\)
=>|c-6|=10
=>c=16 hoặc c=-4
Cho đường tròn (C) x^2 + y^2 - 6x - 2y + 1 = 0.
Viết phường trình đường thẳng đi qua M(0;2) và cắt (C) theo một dây cung có độ dài bằng 4.
Tìm tâm và bán kính của đường tròn trong môi trường hợp sau:
a) Đường tròn có phương trình\({(x + 1)^2} + {(y - 5)^2} = 9\) ;
b) Đường tròn có phương trình\({x^2} + {y^2}-6x - 2y-{\rm{1}}5 = 0\) .
a) Đường tròn \({(x + 1)^2} + {(y - 5)^2} = 9\) có tâm \(I\left( { - 1;5} \right)\) và \(R = 3\)
b) Đường tròn \({x^2} + {y^2}-6x - 2y-{\rm{1}}5 = 0\) có tâm \(I\left( {3;1} \right)\) và \(R = \sqrt {{3^2} + {1^2} + 15} = 5\)
Viết phương trình đường thẳng \(\left(\Delta\right)\) vuông góc với đường thẳng \(\left(d\right):x+y+6=0\) và \(\left(\Delta\right)\) cắt đường tròn \(\left(C\right):\left(x+2\right)^2+\left(y-1\right)^2=25\) tại hai điểm M và N sao cho \(S_{\Delta IMN}=\dfrac{25}{2}\) ( biết \(I\) là tâm đường tròn )
Hãy cho biết phương trình nào dưới đây là phương trình đường tròn. Tìm tâm và bán kính của đường tròn đó.
a) \({x^2} - {y^2} - 2x + 4y - 1 = 0\)
b) \({x^2} + {y^2} - 2x + 4y + 6 = 0\)
c) \({x^2} + {y^2} + 6x - 4y + 2 = 0\)
a) Đây không phải là dạng của phương trình đường tròn (hệ số \({y^2}\) bằng -1).
b) Vì \({a^2} + {b^2} - c = {1^2} + {\left( { - 2} \right)^2} - 6 < 0\) nên phương trình đã cho không là phương trình tròn.
c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {2^2} - 1 = 11 > 0\) nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;2} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} = \sqrt {11} \).
Cho đường tròn (C): \(\left(x-1\right)^2+\left(y-1\right)^2=25\) và M(0;-2). Hãy viết đường thẳng qua M và cắt đường tròn tại 2 điểm A, B sao cho diện tích tam giác IAB lớn nhất. (I là tâm đường tròn)
Cho parabol (P): \(y=2x^2+6x-1\)
Tìm giá trị của k để đường thẳng Δ: \(y=x\left(k+6\right)+1\) cắt parabol tại hai điểm phân biệt M,N sao cho trung điểm của đoạn thẳng MN nằm trên đường thẳng d: \(4x+2y-3=0\)
Trong mặt phẳng tọa độ Oxy cho điểm A(4; – 1), đường thẳng (d) : 3x – 2y + 1 = 0 và đường tròn (C) :
x^2 + y^2 - 2x + 4y -4 = 0
a. Tìm tọa độ A’ và phương trình (d’) lần lượt là ảnh của A và (d) qua phép tịnh tiến theo vectơ v = (– 2; 3)
b. Tìm phương trình đường tròn (C’) là ảnh của đường tròn (C) qua phép đối xứng trục là đường thẳng (D) : x – y = 0