7x (3x-1)+21 (3x-1)=0
Giải phương trình
1) 16-8x=0
2) 7x+14=0
3) 5-2x=0
4) 3x-5=7
5) 8-3x=6
6) 8=11x+6
7)-9+2x=0
8) 7x+2=0
9) 5x-6=6+2x
10) 10+2x=3x-7
11) 5x-3=16-8x
12)-7-5x=8+9x
13) 18-5x=7+3x
14) 9-7x=-4x+3
15) 11-11x=21-5x
16) 2(-7+3x)=5-(x+2)
17) 5(8+3x)+2(3x-8)=0
18) 3(2x-1)-3x+1=0
19)-4(x-3)=6x+(x-3)
20)-5-(x+3)=2-5x
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
1) 16 - 8x = 0 ⇔ 8(2 - x) = 0⇔ 2 - x = 0 ⇔ x = 2
Vậy phương trình có nghiệm là x = 2
a) (4x-10)(24+3x)=0
b)7x-21+x(x-3)=0
c)x^2-1=2x(x+1)
a, \(\left(4x-10\right)\left(24+3x\right)=0\)
⇔\(\left[{}\begin{matrix}4x-10=0\\24+3x=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}4x=10\\3x=-24\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=\frac{5}{2}\\x=-8\end{matrix}\right.\)
Vậy...
b,\(7x-21+x\left(x-3\right)=0\)
⇔\(7\left(x-3\right)+x\left(x-3\right)=0\)
⇔\(\left(7+x\right)\left(x-3\right)=0\)
⇔\(\left[{}\begin{matrix}7+x=0\\x-3=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=-7\\x=3\end{matrix}\right.\)
Vậy...
c,Mình bận quá.Xin lỗi mình xin không làm!
Gợi ý:
Phân tích vế trái sang hằng đẳng thức số 3 rồi tính nhé!
a) Ta có: \(\left(4x-10\right)\left(24+3x\right)=0\)
\(\Leftrightarrow6\left(2x-5\right)\left(8+x\right)=0\)
mà 6≠0
nên \(\left[{}\begin{matrix}2x-5=0\\8+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\x=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-8\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{5}{2};-8\right\}\)
b) Ta có: \(7x-21+x\left(x-3\right)=0\)
\(\Leftrightarrow7\left(x-3\right)+x\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(7+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\7+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-7\end{matrix}\right.\)
Vậy: S={3;-7}
c) Ta có: \(x^2-1=2x\left(x+1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-2x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(-x-1\right)=0\)
\(\Leftrightarrow-\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
Vậy: S={-1}
c,\(x^2-1=2x\left(x+1\right)\)
⇔\(\left(x+1\right)\left(x-1\right)=2x\left(x+1\right)\)
⇔\(\left(x+1\right)\left(x-1\right)-2x\left(x+1\right)=0\)
⇔\(\left(x+1\right)\left(-x-1\right)=0\)
⇔\(\left[{}\begin{matrix}x+1=0\\-x-1=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\)
Vậy...
a, 3-x=x-5 b, 7x+21=0 c, 0,25x+1,5=0 d, 6,36-5,3x=0
e, 3x+1=7x-11 f, 15-4x=6x+5 g, 2(x+1)=3+2x
h, 3(1-x)+4x-3 = 0
a: =>-2x=-8
hay x=4
b: =>7x=-21
hay x=-3
c: =>0,25x=-1,5
hay x=-6
d: =>5,3x=6,36
hay x=6/5
e: =>-4x=-12
hay x=3
f: =>-10x=-10
hay x=1
g: =>2x+2-3-2x=0
=>-1=0(vô lý)
h: =>3-3x+4x-3=0
=>x=0
a,
\(3-x=x-5\\ \Leftrightarrow3x-x+5=0\Leftrightarrow2x+5=0\)
\(\Rightarrow x=-\dfrac{5}{2}\)
b, \(\Rightarrow x=-\dfrac{21}{7}=-3\)
c, \(\Leftrightarrow x=\left(0-1,5\right):0,25=-6\)
a. <=> 2x=8 hay x=4
b.<=> x= -21/7 = -3
c. <=> x= -1,5/ 0,25=-6
d. <=> x= -6,36/-5,3=1,2
e.<=> 4x=12 hay x= 3
f. <=> 10x = 10 hay x = 1
g. <=> 2x +2 = 3 + 2x
<=> 2=3 ( vô lí )
h.<=> 3 - 3x + 4x -3 =0
<=> x=0
Giai phương trình sau:
a,\(x^2+3x-10=0\) b,\(3x^2-7x+1=0\)
c,\(3x^2-7x+8=0\) d,\(4x^2-12x+9=0\)
e,\(3x^2+7x+2=0\) h,\(x^2-4x+1=0\)
i,\(2x^2-6x+1=0\) j, \(3x^2+4x-4=0\)
a) Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy: S={-5;2}
b) Ta có: \(3x^2-7x+1=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{37}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=\dfrac{37}{36}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{7}{6}=\dfrac{\sqrt{37}}{6}\\x-\dfrac{7}{6}=-\dfrac{\sqrt{37}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{37}+7}{6}\\x=\dfrac{-\sqrt{37}+7}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{\sqrt{37}+7}{6};\dfrac{-\sqrt{37}+7}{6}\right\}\)
c) Ta có: \(3x^2-7x+8=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{8}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{8}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{47}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=-\dfrac{47}{36}\)(vô lý)
Vậy: \(x\in\varnothing\)
1)4x-20=0 ; 2) 5x+15=0 ; 3) 3x-5=7x+2 ; 4) 4x-(x-1)=2(1+x) ; 5) x2 -2x=0 ; 6) 2(3x-5)-3(x-2)=3(x+4) ; 7) (x+3)(2x-7)=0
8) 5x(x-3)+2x-6=0 ; 9) (3x-1)(2x-1)-(3x-1)(x+2)=0
10)|2x-1|+1=8 ; 11) |x-2|=3x+1 ; 12) |2x|=21-x
Giải các phương trình nha mọi người ^_^
Giải phương trình
1) 16-8x=0
2) 7x+14=0
3) 5-2x=0
4) 3x-5=7
5) 8-3x=6
6) 8=11x+6
7)-9+2x=0
8) 7x+2=0
9) 5x-6=6+2x
10) 10+2x=3x-7
11) 5x-3=16-8x
12)-7-5x=8+9x
13) 18-5x=7+3x
14) 9-7x=-4x+3
15) 11-11x=21-5x
16) 2(-7+3x)=5-(x+2)
17) 5(8+3x)+2(3x-8)=0
18) 3(2x-1)-3x+1=0
19)-4(x-3)=6x+(x-3)
20)-5-(x+3)=2-5x
Mấy cái này chuyển vế đổi dấu là xong í mà :3
1,
16-8x=0
=>16=8x
=>x=16/8=2
2,
7x+14=0
=>7x=-14
=>x=-2
3,
5-2x=0
=>5=2x
=>x=5/2
Mk làm 3 cau làm mẫu thôi
Lúc đăng đừng đăng như v :>
chi ra khỏi ngt nản
từ câu 1 đến câu 8 cs thể làm rất dễ,bn tham khảo bài của bn muwaa r làm những câu cn lại
1, 16 - 8x = 0
<=>-8x = 16
<=> x = -2
Vậy_
2, 7x + 14 = 0
<=> 7x = -14
<=> x = -2
3, 5 - 2x = 0
<=> - 2x = -5
<=> x =\(\frac{5}{2}\)
Vậy_
4, 3x - 5 = 7
<=> 3x = 7 + 5
<=> 3x = 12
<=> x = 4
Vậy...
5, 8 - 3x = 6
<=> - 3x = 6 - 8
<=> -3x = - 2
<=> x =\(\frac{2}{3}\)
Vậy......
Giải các phương trình sau
a ( 3x-1)^2 - (x+3)^2
b x^3-x/49 = 0
c x^2 -7x+12
d 4x^2 -3x -1 =0
e . 29-x/21 + 27-x/23 + 25-x/25 + 23-x/28 + 21-x/29
a) \(\left(3x-1\right)^2-\left(x+3\right)^2=0\)
\(=>\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)
\(=>\left(4x+2\right)\left(2x-4\right)=0\)
\(=>4\left(2x+1\right)\left(x-2\right)=0\)
\(=>\orbr{\begin{cases}2x+1=0\\x-2=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=-\frac{1}{2}\\x=2\end{cases}}\)
b)\(x^3-\frac{x}{49}=0=>x\left(x^2-\frac{1}{49}\right)=0=>x\left(x-\frac{1}{7}\right)\left(x+\frac{1}{7}\right)=0\)
\(=>x=0\)hoặc \(x=\frac{1}{7}\) hoặc \(x=-\frac{1}{7}\)
a)\(\(\left(3x-1\right)^2-\left(x+3\right)^2=0\)\)
\(\(\Leftrightarrow\left(3x-1-x-3\right)\left(3x-1+x+3\right)=0\)\)
\(\(\Leftrightarrow\left(2x-4\right)\left(4x+2\right)=0\)\)
\(\(\Leftrightarrow\orbr{\begin{cases}2x-4=0\\4x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}}\)\)
b)\(\(x^3-\frac{x}{49}=0\)\)
\(\(\Leftrightarrow\frac{49x^3-x}{49}=0\)\)
\(\(\Leftrightarrow x\left(49x^2-1\right)=0\)\)
\(\(\Leftrightarrow\orbr{\begin{cases}x=0\\49x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(7x-1\right)\left(7x+1\right)=0\end{cases}}}\)\)\
\(\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{7};x=-\frac{1}{7}\end{cases}}\)\)
c)\(\(x^2-7x+12=0\)\)
\(\(\Leftrightarrow\left(x-4\right)\left(x-3\right)=0\)\)
\(\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=3\end{cases}}}\)\)
d) \(\(4x^2-3x-1=0\)\)
\(\(\Leftrightarrow4x^2-4x+x-1=0\)\)
\(\(\Leftrightarrow4x\left(x-1\right)+\left(x-1\right)=0\)\)
\(\(\Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\)\)
\(\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\4x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{4}\end{cases}}}\)\)
e) Tham khảo tại : [Toán 8]Giải phương trình | Cộng đồng học sinh Việt Nam - HOCMAI Forum
https://diendan.hocmai.vn/threads/toan-8-giai-phuong-trinh.290061/
_Y nguyệt_
a thiếu đề bạn nhé
b) \(x^3-\frac{x}{49}=0\)
\(\Rightarrow x\left(x^2-\frac{1}{49}\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x^2-\frac{1}{49}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{7}\end{cases}}}\)
Vậy.........
c) \(x^2-7x++12=0\)
\(\Rightarrow\left(x-3,5\right)^2-0,5^2=0\)
\(\Rightarrow\left(x-3,5+0,5\right)\left(x-3,5-0,5\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}}\)
Vậy.....
d) \(4x^2-3x-1=0\)
\(\Rightarrow4x^2-3x+0,5625-1,5625=0\)
\(\Rightarrow\left(2x-0,75\right)^2-1,25^2=0\)
\(\Rightarrow\left(2x-0,75+1,25\right)\left(2x-0,75-1,25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+0,5=0\\2x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-0,25\\x=1\end{cases}}}\)
Vậy.....
1) Giai các phương trình sau:
a) 7x + 21 =0
b) 12 -6x =0
c) 5x -2 =0
d) -2x + 14 =0
e) 0,25x + 1,5 =0
2) Giai các phương trình sau:
a) 3x + 1 = 7x -11
b) 11 -2x = x - 1
c) 5 -3x = 6x +7
d) 15 - 8x = 9 -5x
1a) 7x + 21 = 0
<=> 7x = -21
<=> x = -21/7
<=> x = -3
Vậy nghiệm của phương trình trên là S = {-3}
b) 12 - 6x = 0
<=> -6x = -12
<=> x = -12/-6
<=> x = 2
Vậy nghiệm của phương trình trên là S = {2}
c) 5x - 2 = 0
<=> 5x = 2
<=> x = 2/5
Vậy nghiệm của phương trình trên là S = {2/5}
d) -2x + 14 = 0
<=> -2x = -14
<=> x = -14/-2
<=> x = 7
Vậy nghiệm của phương trình là S = {7}
e) 0,25x + 1,5 = 0
<=> 0,25x = -1,5
<=> x = -1,5/0,25
<=> x = -6
Vậy nghiệm của phương trình là S = {-6}
2a) 3x + 1 = 7x - 11
<=> 3x - 7x = -11 - 1
<=> -4x = -12
<=> x = -12/-4
<=> x = 3
Vậy nghiệm của phương trình trên là S = {3}
b) 11 - 2x = x - 1
<=> -2x - x = -1 - 11
<=> -3x = -12
<=> x = -12/-3
<=> x = 4
Vậy nghiệm của phương trình là S = {4}
c) 5 - 3x = 6x + 7
<=> -3x - 6x = 7 - 5
<=> -9x = 2
<=> x = 2/-9
Vậy nghiệm của phương trình trên là S = {-2/9}
d) 15 - 8x = 9 - 5x
<=> -8x + 5x = 9 - 15
<=> -3x = 6
<=> x = 6/-3
<=> x = -2
Vậy nghiệm của phương trình trên là S = {-2}
~Sai thì thôi
#Học tốt!!!
~NTTH~
tìm x
a)(3x-1)^2+2(3x-1)(2x+1)+(2x+1)^2=0
b)(7x+2)^2+(7x-2)^2-2(7x+2)(7x-2)=0
I don't now
sorry
...................
nha
a) \(\left(3x-1\right)^2+2\left(3x-1\right)\left(2x+1\right)+\left(2x+1\right)^2=0\)
\(\Leftrightarrow\)\(\left[\left(3x-1\right)+\left(2x-1\right)\right]^2=0\)
\(\Leftrightarrow\)\(\left(5x-2\right)^2=0\)
\(\Leftrightarrow\)\(5x-2=0\)
\(\Leftrightarrow\)\(x=\frac{2}{5}\)
Vậy...
b) \(\left(7x+2\right)^2+\left(7x-2\right)^2-2\left(7x+2\right)\left(7x-2\right)=0\)
\(\Leftrightarrow\)\(\left[\left(7x+2\right)-\left(7x-2\right)\right]^2=0\)
\(\Leftrightarrow\)\(4^2=0\) vô lí
Vậy pt vô nghiệm