Những câu hỏi liên quan
BA
Xem chi tiết
H24
Xem chi tiết
TC
3 tháng 8 2021 lúc 14:52

undefined

Bình luận (0)
H24
Xem chi tiết
TC
3 tháng 8 2021 lúc 15:00

undefined

Bình luận (0)
TA
Xem chi tiết
LH
22 tháng 8 2019 lúc 22:27

a, \(x^4-4x^3-6x^2-4x+1=0\)(*)

<=> \(x^4+4x^2+1-4x^3-4x+2x^2-12x^2=0\)

<=> \(\left(x^2-2x+1\right)^2=12x^2\)

<=>\(\left(x-1\right)^4=12x^2\) <=> \(\left[{}\begin{matrix}\left(x-1\right)^2=\sqrt{12}x\\\left(x-1\right)^2=-\sqrt{12}x\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x^2-2x+1-\sqrt{12}x=0\left(1\right)\\x^2-2x+1+\sqrt{12}x=0\left(2\right)\end{matrix}\right.\)

Giải (1) có: \(x^2-2x+1-\sqrt{12}x=0\)

<=> \(x^2-2x\left(1+\sqrt{3}\right)+\left(1+\sqrt{3}\right)^2-\left(1+\sqrt{3}\right)^2+1=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2-3-2\sqrt{3}=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2=3+2\sqrt{3}\) <=> \(\left[{}\begin{matrix}x-1-\sqrt{3}=\sqrt{3+2\sqrt{3}}\\x-1-\sqrt{3}=-\sqrt{3+2\sqrt{3}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(ktm\right)\\x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(tm\right)\end{matrix}\right.\)

=> \(x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

Giải (2) có: \(x^2-2x+1+\sqrt{12}x=0\)

<=> \(x^2-2x\left(1-\sqrt{3}\right)+\left(1-\sqrt{3}\right)^2-\left(1-\sqrt{3}\right)^2+1=0\)

<=> \(\left(x+\sqrt{3}-1\right)^2=3-2\sqrt{3}\) .Có VP<0 => PT (2) vô nghiệm

Vậy pt (*) có nghiệm x=\(-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

Bình luận (0)
AC
Xem chi tiết
NC
16 tháng 10 2018 lúc 18:50

( 36x +12x5 - 8x4 + 10x3 - 6x2 + 2x - 1) : (x4 + 4x3 - 3x2 + 2x - 1)

=12x-56

Dư 120x3-98x2+112x+55

(Mình tính ra nháp r hí hí)

Bình luận (0)
H24
Xem chi tiết
NL
5 tháng 1 2024 lúc 16:21

a.

\(x^3-7x+6=0\)

\(\Leftrightarrow x^3-3x^2+2x+3x^2-9x+6=0\)

\(\Leftrightarrow x\left(x^2-3x+2\right)+3\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x^2-x-2x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[x\left(x-1\right)-2\left(x-1\right)\right]\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)

Bình luận (0)
NL
5 tháng 1 2024 lúc 16:23

f.

\(x^4-4x^3+12x-9=0\)

\(\Leftrightarrow x^4-4x^3+3x^2-3x^2+12x-9=0\)

\(\Leftrightarrow x^2\left(x^2-4x+3\right)-3\left(x^2-4x+3\right)=0\)

\(\Leftrightarrow\left(x^2-4x+3\right)\left(x^2-3\right)=0\)

\(\Leftrightarrow\left(x^2-x-3x+3\right)\left(x^2-3\right)=0\)

\(\Leftrightarrow\left[x\left(x-1\right)-3\left(x-1\right)\right]\left(x^2-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=3\\x=\pm\sqrt{3}\end{matrix}\right.\)

Bình luận (0)
NL
5 tháng 1 2024 lúc 16:25

g.

\(x^5-5x^3+4x=0\)

\(\Leftrightarrow x\left(x^4-5x^2+4\right)=0\)

\(\Leftrightarrow x\left(x^4-x^2-4x^2+4\right)=0\)

\(\Leftrightarrow x\left[x^2\left(x^2-1\right)-4\left(x^2-1\right)\right]=0\)

\(\Leftrightarrow x\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm1\\x=\pm2\end{matrix}\right.\)

Bình luận (0)
KL
Xem chi tiết
NT
22 tháng 10 2021 lúc 21:34

1: \(6x^2-8=40\)

\(\Leftrightarrow x^2=8\)

hay \(x\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)

Bình luận (0)
H24
Xem chi tiết
DL
18 tháng 2 2022 lúc 9:09

a, \(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\left(9x^2-4\right)-\left(\left(3x+2\right)\left(x-1\right)\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-\left(3x^2-x-2\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)=0;3x^2+x-2=0\)

=> x=-1  

với \(3x^2+x-2=0\)

ta sử dụng công thức bậc 2 suy ra : \(x=\dfrac{2}{3};x=-1\)

Vậy  ghiệm của pt trên \(S\in\left\{-1;\dfrac{2}{3}\right\}\)

Bình luận (0)
NT
18 tháng 2 2022 lúc 9:57

b: \(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)

\(\Leftrightarrow3x^2=3\)

hay \(x\in\left\{1;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)

hay \(x\in\left\{1;-2;\dfrac{7}{5}\right\}\)

Bình luận (0)
H24
Xem chi tiết
NT
8 tháng 8 2021 lúc 21:46

c) Ta có: \(C=4x^2+y^2-4xy+8x-4y+4\)

\(=\left(2x-y\right)^2+2\cdot\left(2x-y\right)\cdot2+2^2\)

\(=\left(2x-y+2\right)^2\)

Bình luận (1)
H24
Xem chi tiết