Với giá trị nào của a thì mỗi căn thức sau có nghĩa:
a. \(\sqrt{\dfrac{a}{3}}\); b. \(\sqrt{-5a};\) c. \(\sqrt{4-a};\) d. \(\sqrt{3a+7}?\)
a) \(\sqrt{\dfrac{1}{3-2x}}\)
Đề bài với giá trị nào của x thì mỗi căn thức sau có nghĩa
giải chi tiết hộ mình với ạ!!!
Để \(\sqrt{\dfrac{1}{3-2x}}\) có nghĩa
Khi\(\dfrac{1}{3-2x}\ge0\)
\(\Leftrightarrow3-2x>0\)
\(\Leftrightarrow-2x< -3\)
\(\Leftrightarrow x>\dfrac{3}{2}\)
ĐKXĐ: \(x< \dfrac{3}{2}\)
Bài 6 (trang 10 SGK Toán 9 Tập 1)
Với giá trị nào của $a$ thì mỗi căn thức sau có nghĩa:
a)$\sqrt{\dfrac{a}{3}}$; b)$\sqrt{-5a}$; c)$\sqrt{4-a}$; d)$\sqrt{3a+7}$ ?
a
căn có nghĩa
\(\Leftrightarrow\frac{a}{3}\ge0\)
\(\Leftrightarrow a\ge0\)
b
căn có nghĩa
\(\Leftrightarrow-5a\ge0\)
\(\Leftrightarrow b\le0\left(-5\le0\right)\)
c
căn có nghĩa
\(\Leftrightarrow4-a\ge0\)
\(\Leftrightarrow-a\ge0-4\)
\(\Leftrightarrow-a\ge-4\)
\(\Leftrightarrow a\le4\)
d
căn có nghĩa
\(\Leftrightarrow3a+7\ge0\)
\(\Leftrightarrow a\ge-\frac{7}{3}\)
\(\sqrt{\dfrac{a}{3}}\) xác định vs mọi x , \(\sqrt{-5A}\) XÁC ĐỊNH A=0 , \(\sqrt{4-A}\) XÁC ĐỊNH VS A= 4 ; \(\sqrt{ }\) 3A +7 XÁC ĐỊNH KHI X= -7/3
VỚI GIÁ TRỊ NÀO CỦA X THÌ MỖI CĂN THỨC SAU CÓ NGHĨA
\(\sqrt{\dfrac{1}{-1+1x}}\)
\(\sqrt{\dfrac{1}{-1+x}}=\sqrt{\dfrac{1}{x-1}}\) có nghĩa khi:
\(\left\{{}\begin{matrix}\dfrac{1}{x-1}\ge0\\x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x\ne1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ne1\end{matrix}\right.\)
\(\Leftrightarrow x>1\)
\(ĐKXĐ:\dfrac{1}{-1+1x}>0\Leftrightarrow-1+1x< 0\\ \Leftrightarrow x< -1\)
Với giá trị nào của a thì mỗi căn thức sau có nghĩa:
a,\(\sqrt{\dfrac{a}{3}}\) ; b, \(\sqrt{-5a}\) ; c, \(\sqrt{4-a}\) ; d, \(\sqrt{3a+7}\)
Giúp với ạ
Mink đag cần gấp. Chiều nộp r
a) ĐKXĐ: \(\dfrac{a}{3}\ge0\Leftrightarrow a\ge0\)
b) ĐKXĐ: \(-5a\ge0\Leftrightarrow a\le0\)
c) ĐKXĐ: \(4-a\ge0\Leftrightarrow a\le4\)
d) ĐKXĐ: \(3a+7\ge0\Leftrightarrow a\ge-\dfrac{7}{3}\)
a: ĐKXĐ: \(a\ge0\)
b: ĐKXĐ: \(a\le0\)
c: ĐKXĐ: \(a\le4\)
d: ĐKXĐ: \(a\ge-\dfrac{7}{3}\)
Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
\(\dfrac{x}{x-2}\)+ \(\sqrt{x-2}\) + \(\sqrt{x-2}\)\(\dfrac{x}{x^2-4}\)
Biểu thức có nghĩa \(<=>\begin{cases} x^2-4 \ne 0\\x-2 \ge0 \end{cases}\)
\(<=>\begin{cases} x \ne \pm 2\\x \ge 2\end{cases}\)
`<=>x > 2`
hmmm....đợi cô nghĩ chút<)
với giá trị nào của x thì căn thức sau có nghĩa
\(\sqrt{\dfrac{x^2+2x+4}{2x-3}}\)
Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
a) \(\sqrt{x-2\sqrt{x-1}}\)
chứng minh √3-2 √2 - √2= -1
rút gọn √6-2√5 -√6+2√5
vs giá trị nào của x thì mỗi căn thức có nghĩa
\(\sqrt{\dfrac{x-1}{x+3}}\) b \(\sqrt{7-x}\) + 2 \(\sqrt{a}+1\)
1)\(\sqrt{3-2\sqrt{2}}-\sqrt{2}=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{2}=\sqrt{2}-1-\sqrt{2}=-1\left(đpcm\right)\)
2) \(\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}-1-\sqrt{5}-1=-2\)
3) \(ĐK:\)\(\left\{{}\begin{matrix}\dfrac{x-1}{x+3}\ge0\\x+3\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\x+3< 0\end{matrix}\right.\end{matrix}\right.\\x\ne-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x< -3\end{matrix}\right.\)
4) \(ĐK:\left\{{}\begin{matrix}7-x\ge0\\a\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le7\\a\ge0\end{matrix}\right.\)
Với giá trị nào của a thì mỗi căn thức sau có nghĩa:
4 - a
Điều kiện 4 – a ≥ 0 => -a ≥ -4 = > a ≤ 4
Với gái trị nào của a thì mỗi căn thứ sau có nghĩa:
a, \(\sqrt{\dfrac{a}{3}}\) ; b, \(\sqrt{-5a}\) ; c, \(\sqrt{4-a}\)
Mẫu: \(\sqrt{2x-7}\)
\(\sqrt{2x-7}\) có nghĩa khi 2x - 7 ≥ 0
⇔ 2x ≥ 7
⇔ x ≥ \(\dfrac{7}{2}\)
Vậy x ≥ \(\dfrac{7}{2}\) thì \(\sqrt{2x-7}\) xác định
Mn giúp vs ạ. Làm giống mẫu trên vs ạ
Tý nx mink phải nộp r
a) \(\sqrt{\dfrac{a}{3}}\) có nghĩa khi: \(\dfrac{a}{3}\ge0\Leftrightarrow a\ge0\)
Vậy \(a\ge0\) thì \(\sqrt{\dfrac{a}{3}}\) xác định
b) \(\sqrt{-5a}\) có nghĩa khi \(-5a\ge0\Leftrightarrow a\le0\)
Vậy \(a\le0\) thì \(\sqrt{-5a}\) xác định
c) \(\sqrt{4-a}\) có nghĩa khi \(4-a\ge0\Leftrightarrow-a\ge-4\Leftrightarrow a\le4\)
Vậy \(a\le4\) thì \(\sqrt{4-a}\) xác định
a: ĐKXĐ: \(a\ge0\)
b: ĐKXĐ: \(a\le0\)
c: ĐKXĐ: \(a\le4\)