Tìm x,y,z \(\in\) Z+ t/m : 2(y+z) = x(yz-1)
Cho các số thực dương x,y,z t/m xy+yz+xz=1
Tìm min của \(P=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
\(P\ge\frac{x+y+z}{2}=\frac{\sqrt{\left(x+y+z\right)^2}}{2}\ge\frac{\sqrt{3\left(xy+yz+zx\right)}}{2}=\frac{\sqrt{3}}{2}\)
\("="\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
cho x,y,z ≥ 0 thỏa mãn x^2 +y^2 +z^2 =1. tìm GTNN, GTLN của T = x/1-yz + y/1-zx + z/1-xy
1, Tìm x; y; z \(\in N\) biết: xyz + xy +yz + zx + x + y + z = 2017
2, Cho x; y; z \(\in N\) thỏa mãn: \(\dfrac{x+y\sqrt{7}}{x+z\sqrt{7}}\) là một số hữu tỉ.
Tìm x; y; z để:
a) \(x^2+y^2+z^2\) là số nguyên tố
b) \(x^2-2y^2+z^2=143\)
xy \(\ge\) 2016x + 2017y
\(\Leftrightarrow\)1 \(\ge\) \(\dfrac{2016}{y}\) + \(\dfrac{2017}{x}\)\(\ge\dfrac{\left(\sqrt{2016}+\sqrt{2017}\right)^2}{x+y}\)
\(\Rightarrow x+y\ge\left(\sqrt{2016}+\sqrt{2017}\right)^2\)
Bài này lâu rùi sao ko mất đi thế ???
Bó tay "H24 HOC24"
1. Tìm a,b ∈ Z+(a,b ≠1) để 2a+3b là số chính phương
2. Tìm nghiệm nguyên không âm của phương trình:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\)
3. Tìm x,y,z ∈ Z+ t/m:
\(xy+y-x!=1;yz+z-y!=1;x^2-2y^2+2x-4y=2\)
4. Tìm tất cả các số nguyên tố p;q;r sao cho:
pq+qp=r
5. Tìm nghiệm nguyên tố của phương trình:
\(x^y+y^x+2022=z\)
6. CMR: Với n ∈ N và n>2 thì 2n-1 và 2n+1 không thể đồng thời là 2 số chính phương
Bài 2: Ta có:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ
\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).
Thay vào tìm được y...
Lúc nãy bận thi online nên giờ mới làm tiếp được, bạn thông cảm.
Bài 4:
Do p; q; r là các SNT nên \(p^q+q^p>2^2+2^2=8\Rightarrow r>8\) nên r là SNT lẻ
Mà r lẻ thì trong 2 số \(p^q;q^p\) phải có 1 số lẻ, một số chẵn.
Do vai trò p; q như nhau nên không mất tính tổng quát ta giả sử p lẻ, q chẵn
\(\Rightarrow q=2\). Lúc này ta có:
\(p^2+2^p=r\)
+Xét p=3\(\Rightarrow p^2+2^p=r=17\left(tm\right)\) (Do p lẻ nên loại TH p=2)
+Xét p>3. Ta có:
\(\left\{{}\begin{matrix}p^2\equiv1\left(mod3\right)\\2^p\equiv\left(-1\right)^p\equiv-1\left(mod3\right)\end{matrix}\right.\)
\(\Rightarrow p^2+2^p\equiv1+\left(-1\right)\equiv0\left(mod3\right)\)
\(\Rightarrow\left(p^2+2^p\right)⋮3\) mà \(p^2+2^p>3\) nên là hợp số
\(\Rightarrow r\) là hợp số, không phải SNT, loại.
Vậy ta có \(\left(p;q;r\right)\in\left\{\left(3;2;17\right);\left(2;3;17\right)\right\}\) tm đề bài
Bài 6: Ta có 1SCP lẻ chia cho 4 dư 1.
Nếu 2n-1 là SCP thì ta có
\(2n-1\equiv1\left(mod4\right)\Leftrightarrow2n+1\equiv3\left(mod4\right)\)
Do đó 2n+1 không là SCP
\(\Rightarrowđpcm\)
cho x,y,z thỏa mãn xy+yz+zx=1 tính A=x√[(1+y^2)(1+z^2)/1+x^2]+y√[(1+z^2)(1+x^2)/1+y^2]+z√[(1+x^2)(1+y^2)/1+z^2
Với ba số dương x,y,z thỏa mãn x+y+z=1
Tìm GTLN của Q=\(\frac{x}{x+\sqrt{x+yz}}+\frac{y}{y+\sqrt{y+xz}}+\frac{z}{z+\sqrt{z+yz}}\)
Lời giải:
Do $x+y+z=1$ nên:
$x+yz=x(x+y+z)+yz=(x+y)(x+z)=(x+y)(z+x)\geq (\sqrt{xz}+\sqrt{xy})^2$ theo BĐT Bunhiacopxky
$\Rightarrow \sqrt{x+yz}\geq \sqrt{xz}+\sqrt{xy}$
$\Rightarrow \frac{x}{x+\sqrt{x+yz}}\leq \frac{x}{x+\sqrt{xz}+\sqrt{xy}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}$
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:
$Q\leq \frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1$
Vậy $Q_{\max}=1$ khi $x=y=z=\frac{1}{3}$
Cho x,y,z thỏa mãn x+y+z=7;x^2+y^2+z^2=23,xyz=3
Tính H=1/xy+z-6+1/yz+x-6+1/zx+y-6
ta có : \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx\)
\(=23+2\left(xy+yz+zx\right)=49\Rightarrow xy+yz+zx=13\)
rồi bn có gắn qui đồng nó thế vào là o ke :( mk qui vài mà nó dài quá thôi bỏ luôn
1) Tìm x,y,z biết
a) x.y=2/3; yz=0.6; xz0.625
b) (x+2)^2+(y-3)^4+(z-5)^6=0
c) x(x-y+z)=-11; y(y-z-z)=25 và z(z+x-y)=35
2) Tìm x biết
a) x-1/65+x-3/63=x-5/61+x-7/59
Bài 2:
Ta có: \(\dfrac{x-1}{65}+\dfrac{x-3}{63}=\dfrac{x-5}{61}+\dfrac{x-7}{59}\)
\(\Leftrightarrow\left(\dfrac{x-1}{65}-1\right)+\left(\dfrac{x-3}{63}-1\right)=\left(\dfrac{x-5}{61}-1\right)+\left(\dfrac{x-7}{59}-1\right)\)
\(\Leftrightarrow\left(x-66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\right)=0\)
=>x-66=0
hay x=66
1 a) Tìm các giá trị x,y,z,t thoả mãn các điều kiện sau:
x^2+y^2+z^2+t^2=1 và xy+yz+tx=1
b) Tìm các giá trị x,y,z thoả mãn các điều kiện : x+y+z=6 và x^2+y^2+z^2=12