Những câu hỏi liên quan
H24
Xem chi tiết
NL
2 tháng 3 2021 lúc 21:27

Đặt \(\left(2\sqrt{a}-5;2\sqrt{b}-5;2\sqrt{c}-5\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x;y;z>0\\a=\left(\dfrac{x+5}{2}\right)^2\\b=\left(\dfrac{y+5}{2}\right)^2\\c=\left(\dfrac{z+5}{2}\right)^2\end{matrix}\right.\)

\(Q=\dfrac{\left(x+5\right)^2}{4y}+\dfrac{\left(y+5\right)^2}{4z}+\dfrac{\left(z+5\right)^2}{4x}\ge\dfrac{\left(x+y+z+15\right)^2}{4\left(x+y+z\right)}\)

\(Q\ge\dfrac{\left(x+y+z\right)^2+30\left(x+y+z\right)+225}{4\left(x+y+z\right)}\)

\(Q\ge\dfrac{x+y+z}{4}+\dfrac{225}{4\left(x+y+z\right)}+\dfrac{15}{2}\ge2\sqrt{\dfrac{225\left(x+y+z\right)}{16\left(x+y+z\right)}}+\dfrac{15}{2}=15\)

Dấu "=" xảy ra khi \(a=b=c=25\)

Bình luận (0)
TH
2 tháng 3 2021 lúc 21:28

Áp dụng bđt hoán vị cho hai bộ số đơn điệu ngược chiều \(\left(a,b,c\right);\left(2\sqrt{a}-5,2\sqrt{b}-5,2\sqrt{c}-5\right)\)\(Q\ge\dfrac{a}{2\sqrt{a}-5}+\dfrac{b}{2\sqrt{b}-5}+\dfrac{c}{2\sqrt{c}-5}\).

Mặt khác ta có \(\dfrac{a}{2\sqrt{a}-5}-5=\dfrac{\left(\sqrt{a}-5\right)^2}{2\sqrt{a}-5}\ge0\).

Do đó \(Q\ge5+5+5=15\).

Dấu bằng xảy ra khi a = b = c = 25.

Bình luận (0)
H24
Xem chi tiết
TC
26 tháng 8 2021 lúc 14:56

undefined

Bình luận (0)
NT
26 tháng 8 2021 lúc 14:57

b: Thay \(x=7-2\sqrt{6}\) vào A, ta được:

\(A=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-7+2\sqrt{6}-5\left(\sqrt{6}+1\right)-1}\)

\(=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-8+2\sqrt{6}-5\sqrt{6}-5}\)

\(=\dfrac{-3\sqrt{6}+3}{13+3\sqrt{6}}=\dfrac{93-48\sqrt{6}}{115}\)

Bình luận (0)
LP
Xem chi tiết
XO
3 tháng 2 2023 lúc 21:37

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

Bình luận (0)
XO
3 tháng 2 2023 lúc 22:03

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

Bình luận (0)
MN
Xem chi tiết
NV
Xem chi tiết
NT
31 tháng 10 2021 lúc 11:03

1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{4;9\right\}\end{matrix}\right.\)

Ta có: \(A=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Bình luận (0)
NM
31 tháng 10 2021 lúc 11:05

\(1,A=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\left(x\ge0;x\ne4;x\ne9\right)\\ 2,A< 1\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-3}< 0\Leftrightarrow\sqrt{x}-3< 0\Leftrightarrow0\le x< 9\)

Bình luận (0)
H24
Xem chi tiết
NL
27 tháng 12 2020 lúc 23:31

\(M\ge\dfrac{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}}{2}+\dfrac{\sqrt{\left(\sqrt{b}+\sqrt{c}\right)^2}}{2}+\dfrac{\sqrt{\left(\sqrt{c}+\sqrt{a}\right)^2}}{2}\)

\(M\ge\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
H24
Xem chi tiết
AH
29 tháng 5 2023 lúc 19:29

Bạn xem lại xem đã biết biểu thức đúng chưa vậy?

Bình luận (0)
HH
Xem chi tiết
LJ
Xem chi tiết
TV
15 tháng 12 2024 lúc 10:09

\(Tacó:1=2\sqrt{ab}+\sqrt{\dfrac{a}{3}}\le\left(a+b\right)+\dfrac{1}{2}\left(\dfrac{1}{3}+b\right)=\dfrac{3a+2b}{2}+\dfrac{1}{6}\Rightarrow3a+2b\ge\dfrac{5}{3}\\ \)\(P=\dfrac{3a}{3b}+\dfrac{a}{3b}+\dfrac{b}{3b}+\dfrac{2b}{3a}+9ab+6ab=\left(\dfrac{3a}{3b}+9ab\right)+\left(\dfrac{a}{3b}+\dfrac{b}{3a}\right)+\left(\dfrac{2b}{3a}+6ab\right)\ge6a+\dfrac{2}{3}+4b\ge2\left(3a+2b\right)+\dfrac{2}{3}=4\)\(Pmin=4\Leftrightarrow a=b=\dfrac{1}{3}\)

Bình luận (0)