Những câu hỏi liên quan
CD
Xem chi tiết
RT
Xem chi tiết
NL
29 tháng 7 2021 lúc 14:49

- Với \(m=\dfrac{1}{2}\) ko thỏa mãn

- Với \(m\ne\dfrac{1}{2}\)

\(\Leftrightarrow\left(2m-1\right)x^3-\left(2m-1\right)x^2-\left(m-2\right)x^2+\left(m-4\right)x+2\ge0\)

\(\Leftrightarrow\left(2m-1\right)x^2\left(x-1\right)-\left(x-1\right)\left[\left(m-2\right)x+2\right]\ge0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(2m-1\right)x^2-\left(m-2\right)x-2\right]\ge0\) (1)

Do (1) luôn chứa 1 nghiệm \(x=1\in\left(0;+\infty\right)\) nên để bài toán thỏa mãn thì cần 2 điều sau đồng thời xảy ra:

+/ \(2m-1>0\Rightarrow m>\dfrac{1}{2}\)

+/ \(\left(2m-1\right)x^2-\left(m-2\right)x-2=0\) có 2 nghiệm trong đó \(x_1\le0\) và \(x_2=1\)

Thay \(x=1\) vào ta được:

\(\left(2m-1\right)-\left(m-2\right)-2=0\Leftrightarrow m=1\)

Khi đó: \(x^2+x-2=0\) có 2 nghiệm \(\left[{}\begin{matrix}x_1=-2< 0\left(thỏa\right)\\x_2=1\end{matrix}\right.\)

Vậy \(m=1\)

Bình luận (0)
HT
Xem chi tiết
NL
16 tháng 12 2020 lúc 7:05

1.

\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)

Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:

\(t^2-3m.t+m=0\) (1) 

Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:

TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)

\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)

\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)

TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)

\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)

\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)

Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)

2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)

Ko tồn tại m thỏa mãn

Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?

 

Bình luận (3)
TN
Xem chi tiết
QP
Xem chi tiết
NL
11 tháng 2 2021 lúc 15:28

\(\Leftrightarrow x^4-2x^3-\left(m+3\right)x^2-4x^3+8x^2+4\left(m+3\right)x+mx^2-2mx-m^2-3m=0\)

\(\Leftrightarrow x^2\left(x^2-2x-m-3\right)-4x\left(x^2-2x-m-3\right)+m\left(x^2-2x-m-3\right)=0\)

\(\Leftrightarrow\left(x^2-4x+m\right)\left(x^2-2x-m-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+m=0\\x^2-2x-m-3=0\end{matrix}\right.\)

Pt có 4 nghiệm khi: \(\left\{{}\begin{matrix}\Delta'_1=4-m\ge0\\\Delta'_2=1+m+3\ge0\end{matrix}\right.\)

\(\Leftrightarrow-4\le m\le4\)

Bình luận (0)
DT
Xem chi tiết
H24
Xem chi tiết
TG
30 tháng 7 2021 lúc 11:21

undefined

undefined

Bình luận (0)
NT
30 tháng 7 2021 lúc 13:37

b) Thay x=2 vào pt, ta được:

\(4\left(m^2-1\right)-4m+m^2+m+4=0\)

\(\Leftrightarrow4m^2-4-4m+m^2+m+4=0\)

\(\Leftrightarrow5m^2-3m=0\)

\(\Leftrightarrow m\left(5m-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{5}\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(x_1+x_2=\dfrac{2m}{m^2-1}\)

\(\Leftrightarrow\left[{}\begin{matrix}x_2+2=0\\x_2+2=\dfrac{6}{5}:\left(\dfrac{36}{25}-1\right)=\dfrac{30}{11}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_2=-2\\x_2=\dfrac{8}{11}\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
H24
30 tháng 7 2021 lúc 12:19

câu a 

Gọi xlà nghiệm chung của PT(1) và (2)

\(\Rightarrow\left\{{}\begin{matrix}2x^2_0+\left(3m-1\right)x_0-3=0\left(\times3\right)\\6.x^2_0-\left(2m-1\right)x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x^2_0+3\left(3m-1\right)x_0-9=0\left(1\right)\\6x^2_0-\left(2m-1\right)x_0-1=0\left(2\right)\end{matrix}\right.\)  Lấy (1)-(2) ,ta được 

PT\(\Leftrightarrow3\left(3m-1\right)-9+\left(2m-1\right)+1\)=0

     \(\Leftrightarrow9m-3-9+2m-1+1=0\Leftrightarrow11m-12=0\)

      \(\Leftrightarrow m=\dfrac{12}{11}\)

 

 

Bình luận (0)
VH
Xem chi tiết
NL
20 tháng 1 2022 lúc 22:29

\(\Delta=\left(3m+2\right)^2-12m=9m^2+4>0\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3m-2\\x_1x_2=3m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+1+x_2+1=-3m\\x_1x_2+x_1+x_2+1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+1+x_2+1=-3m\\\left(x_1+1\right)\left(x_2+1\right)=-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x_1+1=a\\x_2+1=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=-3m\\ab=-1\end{matrix}\right.\)

\(Q=a^4+b^4\ge2a^2b^2=2\)

Dấu "=" xảy ra khi \(a^2=b^2\Rightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=-b\end{matrix}\right.\)

\(\Rightarrow-3m=0\Rightarrow m=0\)

Bình luận (0)