Những câu hỏi liên quan
TN
Xem chi tiết
SK
22 tháng 9 2023 lúc 20:19

Bất đẳng thức Cauchy \(\sqrt{ab}\le\dfrac{a+b}{2}\) viết lại dưới dạng \(ab\le\left(\dfrac{a+b}{2}\right)^2\) (*) (a, b ≥ 0)

Áp dụng bất dẳng thức Cauchy dưới dạng (*) với hai số dương 2x và xy ta được :

\(2x.xy\le\left(\dfrac{2x+xy}{2}\right)^2=4\)

Dấu “ = “ xảy ra khi : 2x = xy = 4 : 2 tức là khi x = 1, y = 2=> max A = 2 <=> x = 2, y = 2.

Bình luận (0)
UN
Xem chi tiết
NT
Xem chi tiết
AN
4 tháng 2 2017 lúc 22:22

Ta có:

2x + xy = 4

<=> 2x2 + x2 y = 4x

<=> A = - 2x2 + 4x = 2 - (2x2 - 4x + 2) = 2 - 2(x - 1)2 \(\le\)2

Vậy GTLN là 2 đạt được khi x = 1

Bình luận (0)
AN
4 tháng 2 2017 lúc 22:23

Quên ghi y = 2

Bình luận (0)
NT
7 tháng 2 2017 lúc 12:49

\(\sqrt{25-x^2}+\sqrt{25+x^2}\) biết 

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 2 2019 lúc 17:20

Chọn C

Bình luận (0)
NT
Xem chi tiết
BH
6 tháng 12 2017 lúc 10:07

Ta có: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

=> \(\left(x^2+\frac{y^2}{4}\right)+\left(x^2+\frac{1}{x^2}\right)=4\)

Lại có: \(x^2+\frac{y^2}{4}\ge2.x.\frac{y}{2}=xy\) Và \(x^2+\frac{1}{x^2}\ge2.x.\frac{1}{x}=2\)

=> \(4\ge xy+2\)=> \(2\ge xy\)

=> \(A=2016+xy\le2016+2=2018\)

=> Amin=2018

Bình luận (0)
KN
3 tháng 10 2020 lúc 15:30

\(\sqrt[]{\sqrt{ }\frac{ }{ }\sqrt[]{}3\hept{\begin{cases}\\\\\end{cases}}3\frac{ }{ }\sqrt{ }\cos\hept{\begin{cases}\\\\\end{cases}}\Omega3\cong}\)

Bình luận (0)
 Khách vãng lai đã xóa

oo

Bình luận (0)
TL
Xem chi tiết
HP
Xem chi tiết
H24
19 tháng 7 2021 lúc 19:21

a) Áp dụng bất đẳng thức Cosi ta có :

\(x^2+1\geq 2x\\ 4y^2+1\geq 4y\\ 9z^2+1\geq 6z\)

Suy ra \(S\leq 6\)

Dấu = xảy ra khi \(x=1;y=\frac{1}{2}; z=\frac{1}{3}\)

 

Bình luận (0)
CT
Xem chi tiết
AH
13 tháng 8 2021 lúc 17:13

Bài 1:

Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$

Vậy gtnn của biểu thức là $\frac{5}{4}$

Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$

Bình luận (0)
AH
13 tháng 8 2021 lúc 17:15

Bài 2:

$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)

\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)

Bình luận (1)
TP
Xem chi tiết