WI
M.Bài 6.Cho hai đường tròn (O; R) và (O; R) tiếp xúc ngoài nhau tại M. Hai đường tròn (O) và (O) cùng tiếp xúc trong với đường tròn lớn (O; R) lần lượt tại E và F. Tính bán kính Rbiết chu vi tam giác OOOlà 20cm.Bài 7.Cho đường tròn (O; 9cm). Vẽ 6 đường tròn bằng nhau bán kính R đều tiếp xúc trong với (O) và mỗi đường tròn đều tiếp xúc với hai đường khác bên cạnh nó. Tính bán kính R.Bài 8.Cho hai đường tròn đồng tâm. Trong đường tròn lớn vẽ hai dây bằng nhau AB CD và cùng tiếp xúc với...
Đọc tiếp

Những câu hỏi liên quan
TM
Xem chi tiết
CD
25 tháng 8 2020 lúc 16:53

Vẽ lục giác đều ngoại tiếp đường tròn tâm O. Khi đó 6 đường tròn cần vẽ chính là các đường tròn nội tiếp các tam giác tạo thành từ O với 2 đỉnh kề nhau của lục giác ngoại tiếp đó.

Và ta có mỗi tam giác đó là tam đều nên tâm của 6 tam giác nhỏ chính là trọng tâm của các tam giác đều đó. Khi đó bán kính của 6 tam giác đó: 

\(R=\frac{1}{3}.Ro=\frac{1}{3}.9=3\)

Bình luận (0)
 Khách vãng lai đã xóa
TM
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
CN
Xem chi tiết
LN
Xem chi tiết
QN
Xem chi tiết
NT
9 tháng 5 2023 lúc 19:53

a: góc ABO+góc ACO=180 độ

=>ABOC nội tiếp

b: Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC tại H

=>AH*AO=AB^2

Xét ΔABE và ΔADB có

góc ABE=góc ADB

góc BAE chung

=>ΔABE đồng dạng với ΔADB

=>AB^2=AE*AD=AH*AO

Bình luận (1)
D7
Xem chi tiết
NT
7 tháng 4 2023 lúc 21:44

a: Xét ΔABE và ΔADB co

góc ABE=góc ADB

góc BAE chung

=>ΔABE đồng dạng với ΔADB

=>AB/AD=AE/AB

=>AB^2=AD*AE

Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC tại H

=>AH*AO=AB^2=AE*AD

=>AH/AD=AE/AO

=>ΔAHE đồng dạng với ΔADO

=>góc AHE=góc ADO

=>góc OHE+góc ODE=180 độ

=>OHED nội tiếp

b: OHED nội tiếp

=>góc HED+góc HOD=180 độ

BD//AO

=>góc BDO+góc HOD=180 độ

=>góc BDO=góc HED

góc BCD+góc BDC=90 độ

góc BCD=góc BED
=>góc HED+góc BED=90 độ

=>HE vuông góc BF tại E

Bình luận (0)
TK
Xem chi tiết